Bookmark and Share
logo

Call us now at: 02 9922 6806

appointment times

Feet

Orthotics, Bare Foot Running and Gait Analysis - horses for courses?

by Martin Krause (2003, updated 2015)

Introduction

Orthotics have been advocated in recent decades for the correction of lower limb biomechanical anomalies (Landorf & Keenan 1998). Certain assumptions have been entertained, which stipulate that control over foot pronation reduces the susceptability to injury. Biomechanically, prolonged excessive pronation during the stance phase of gait requires additional internal rotation of the tibia resulting in increased kne flexion (McCulloch et al 1993). Notably, reductions in tibial internal rotation during gait have been demonstrated (Nawoczenski et al 1995). Importantly, changes to calcaneal inversion/eversion with the use of orthotics do not appear to be as significant as the reductions in tibial internal rotation with orthotic use (Nawoczenski et al 1995).

Alterations in the neuromechanical relationship through the entire limb (Hertel et al 2001) through changes in lower limb EMG activity (Nawosczenski & Ludewig 1999) and reflex potentiation (Blanpied et al 1995) could be important aspects of the stretch-shortening cycles of viscoelastic tissue which may be influenced by the altered lower limb biomechanics induced by orthotics. Additionally, improved synergistic action between muscles that could lead to load sharing, and therefore reductions in the percentage of maximal voluntary contraction (MVC) at which the muscles need to produce power was not established (Tomaro & Burdett 1993). Indeed the use of orthotics was shown to increase tibialis anterior activity (Tomaro & Burdett 1993). However, prolonged tibialis anterior activity above 85% MVC has been associated with the high number of injuries amongst runners as a result of early fatigue (Reber et al 1993). Interestingly, these latter authors also demonstrated increased peroneus brevis activity during increasing speeds with running, suggesting the need for increased lateral ankle stability.

Orthotics are considered to support the medial longitudinal arch of the foot, thus relieving tension in the plantar fascia (Donatelli 1987) during stance phase of running. The plantar fascia is thought to be an extension of the triceps surae, which acts with a ‘windlass action' around the ankle to produce power and stability to the foot during running (Adelaar 1986). Thus, alterations in EMG activity in the medial and lateral gastrocnemius muscles may be expected, reflecting the need to improve both power output and joint stability with increasing speeds of running. Indeed, ankle and knee stability has been shown to increase through coactivation of opposing muscle groups as the speed of running increases (Kyroelaeinen et al 1999). Additionally, the hamstring muscles insert on the medial and lateral aspects of the lower leg and therefore are influenced by, or alternately influence, tibial rotation. Importantly, improved joint stability at the knee and ankle, through shoe & orthotic use, could result in reduced EMG activity for the same power output when compared to barefoot or shoe running. Moreover, the majority of power and energy were found to occur in the transverse and frontal planes, primarily associated with energy absorption controlling actions of the lower limb during the midstance and push off periods of gait (Sadeghi et al 2000). Therefore, if orthotics aid in controlling transverse and frontal plane motions then improved effciency of gait and running should occur.

Interestingly, the posterior muscles of the lower limb show a uniform peak in activity during the midstance phase, as opposed to the terminal phase as was previously thought (Reber et al 1993). Their function appears to be to control ankle dorsiflexion through an eccentric contraction as the centre of gravity passes over the ankle (Reber et al 1993). Therefore, the biomechanical property of viscoelasticity in the series elastic components (SEC), contributing to the moments controlling ankle dorsiflexion (ie the plantar fascia and achilles tendons), may not be as significant since the SEC is shortening due to the lengthening of the contractile component (CC) of the biarticular gastrocnemius muscle. Yet during running the biarticular muscles (eg gastrocnemius) have been shown to perform concentrically, whereas the monoarticular muscles (eg soleus) first act eccentrically and then concentrically during the stance phase of running (Kyroelaeinen et al 1999). Clinically, anecdotal evidence suggests that orthotics with a heel raise/wedge could reduce the elongation not only of the achilles tendon, during stance, but probably of the plantar fascia as well. Notably, elongation and then shortening reactions are thought to impart force enhancement at the musculotendinous junction through the storage and release of elastic energy (Blanpied et al 1995). An analogy of the runner and the achilles tendon in particular resembling a pogo stick has been made, which describes this stretch – recoil cycle (Novacheck 1998). Orthotics have been shown to increase the amount of dorsiflexion and knee flexion during running (McCulloch et al 1993). Importantly, the duration of these actions increases during walking with orthotics, suggesting greater time for viscoelastic compliance.

Clearly, during running the viscoelastic compliance is likely to be reduced due to the increased velocities involved in the stretch-shortening cycle. Yet, the biarticular hamstring and gastrocnemius muscles are thought to have important eccentric – concentric functions, which aid efficiency through the storage and later return of elastic potential energy by the stretch of viscoelastic structures (Novacheck 1998). Additionally, efficiency is maintained through the transfer of energy from one body segment to another by the two joint muscles (Novacheck 1998). Importantly, unlike, walking where the interchange between potential and kinetic energy are out of phase, during running these are in phase (Novacheck 1998). Therefore, with increasing velocity of running, the hamstring muscles exhibit minimal change in length and hence mainly functions as an ‘energy strap' transfering energy from the tibia to the pelvis (Novacheck 1998).

Anecdotally, orthotic modifications of footwear have been used clinically to treat achilles tendonopathy (Seggesser et al 1992 ). Theoretically, the effect of orthotics on achilles tendonopathy may be the result of reduced eversion (McCulloch et al 1993), improved talonavicular stability and thus improved ankle and knee stability (McCulloch et al 1993), resulting from reductions in tibial internal rotation (Cornwall & McPoil 1995, Eng & Pierrynowski 1994). Presumably, reduced midfoot pronation leads to reduced frontal plane ankle eversion could create less shearing across the achilles tendon. Additionally, reduced midfoot pronation may reduce transverse plane tibial internal rotation, thereby diminishing energy expenditure in non-sagital plane motions.

Improved synergistic muscle sharing between the medial and lateral gastrocs and the hamstring muscles can be expected, if enhance frontal plane motion can occur through a reduction in transverse and frontal plane motions. Alternatively, the frontal and transverse plane motions may be a necessary ‘damping' moment to reduce the likelihood of injury due to excessive rapid transfer of energy into viscoelastic structures controlling saggital plane propulsion during running. Therefore, it is hypothesised that orthotic use will decrease frontal and transverse plane motions in addition to enhancing EMG activity for frontal plane motion.

Alternatively, bare foot running pundits suggest that lack of exogenous foot support results in increased forefoot loading, reducing the the peak load on 'touch-down' and enhancing the load of the posterior leg musculature, including the calf muscles, hamstrings and gluteals.

Methodology

A male subject was prepared for a 4 test protocol where running was compared over 4 conditions : barefoot, shoe running, shoe + orthotic running, shoe + orthotic + fast running.

Eight video cameras using strobed lights at 120 per secs, a Kistler force plate, and EMG data were used to make comparisons between the 4 conditions. Video equipment was calibrated for 90 seconds using a 499.93mm wand with 0.1 mm errors. The calcaneal angle was calibrated at 7 degrees. The force platform was calibrated for the subjects weight. The EMG was tested for impedence using an ampmeter where 10k W was excepted as normal. Gain settings using a power pack for telemetry sampling at a 400Hz frequency was considered satisfactory for ‘on/off' measures.

The skin was shaved, washed, and abraded for the application of surface EMG electrodes. Surface electrodes were placed at the medial and lateral gastrocnemius and hamstring muscles. Additionally, the subject had markers placed on the big toe nail, 1 st metatarsal head, 5 th metatarsal head navicular, lateral and medial malleolus, medial and lateral calcaneus, posterior calcaneus wand, medial and lateral condyles of the knee, mid tibia, mid thigh, and ASIS. The calcaneal wand was placed through a special window constructed through the sports shoes. The foot markers were removed from the foot surface for the shoe conditions.

The Kintrak project read the data, the segments were identified, the variables were created, the tables were created and the trials were applied. The data was inputed into the Matlab where the EMG was rectified and smoothed for linear envelope representation. The sampling frequency of data was changed to 360 per second. Each condition was repeated three times after a practice trial was performed.

Results & Discussion

The results of the 4 conditions for variations of angles are shown below.

Fig 1.1 Barefoot running angles : external rotation of the tibia at heel strike is followed by an oscillation from internal to external rotation during the stance phase. Both the midfoot and ankle begin in inversion, but evert rapidly, before inverting again at push off.

Fig 1.2 Shoe running angles : little external rotation of the tibia is followed by internal rotation during midstance and then progressive external rotation. The midfoot demonstrates little variability whereas the ankle inversion, followed by eversion and subsequent inversion at push offt.

Fig 1.3 Shoe & orthotic running : little external rotation of the tibia is followed by minor oscillations into internal rotation, with subsequent neutral rotation at push off. The midfoot shows little variability, whereas the ankle deomnstrates inversion at heel strike, eversion in midstance and neutral position at pushoff.

Fig 1.4 Shoe & orthotic fast running : slight external rotation of the tibia is followed by large oscillations into internal rotation with subsequent neutral position at push off. The midfoot shows little variability, whereas tha ankle is in inversion at heel strike followed by eversion at midstance and neutral position at push off.

The data suggests that the barefoot condition demonstrates the greatest variability of knee rotation and ankle inversion/eversion angles during running. The orthotics conditions quite clearly demonstrated neutral ankle and knee positions during the power generation phases of push-off. Interestingly, the shoe condition demonstrated a markedly longer period of stance, whereas the barefoot condition was slightly longer than the two orthotics conditions. Surprisingly little difference in the duration of stance was demonstrated between the fast run and normal run conditions. However, this may be explained by the power generating capacity of the stance phase and perhaps shorter flight phases in the fast run condition.

The surface EMG results for the 4 conditions follow.

Fig 2.1 Surface EMG of medial and lateral gastrocnemius and hamstring muscles during barefoot running : Clear spikes of medial gastrocnemius muscle activity can be seen to be much greater than the spikes in lateral gastrocnemius and hamstring muscles.

Fig 2.2 Surface EMG of medial and lateral gastrocnemius and hamstring muscles during shoe running : Greater synchronization of EMG activity was demonstrated, however the hamstring muscles showed the greatest amount of activity.

Figure 2.3 Surface EMG of medial and lateral gastrocnemius and hamstring muscles during shoe and orthotic running : medial gastrocnemius muscle showed the greatest amount of activity. Interesting, the hamstring muscles showed very little activity.

Fig 2.4 Surface EMG of medial and lateral gastrocnemius and hamstring muscles during fast running with orthotics : note the synchronization of spikes of activity between the three muscles at heel strike, followed by moderate asynchronous activity of medial gastrocnemius and hamstring muscles.

The EMG data is remarkable for the spikes of activity in the barefoot running condition. Particularly the medial gastrocnemius muscle had double the activity of the lateral gastrocnemius and hamstring muscles. When compared to the angular data, this may be interpreted as muscle activity controlling the angular pertubations of movement at the midfoot, ankle and knee. Strikingly, the shoe running condition demonstrated extremely large EMG values for all three muscles, especially when comparing these results to those of the other conditions. Explanations for such a large amount of EMG activity may reside in the enhanced neuromuscular stability required for the soft nature of the shoes without orthotics. Clearly, a lot of EMG activity appears to be wasted suggesting the possibility of early onset of fatigue with cummulative loading. All EMG activity is markedly reduced in the running condition with the orthotic compared to the condition without the orthotics. However, medial gastrocnemius muscle activity remains high, whereas lateral gastrocnemius activity is reduced when compared with the barefoot condition. Fast running demonstrates a synchronous spike of activity at heel strike which may reflect the decelerating function of these muscles. The secondary hamstring muscle spikes may reflect the momentary reversal of tibial rotation and ankle inversion/eversion seen in the kinematic data. Additionally, the lack of further muscle activity and the minor spike of medial gastrocnemius may correlate with the oscillatory change from eversion to inversion seen in the kinematic data.

As suggested anecdotally by barefoot running and soft shoe running pundits, the loading of the posterior leg muscles increases, which rather than seen as inefficieny of overactivity in redundant muscle groups may well represent enhanced synchronicity and power generation in these muscle groups whilst reducing the load on the anterior muscles crossing the hip and knee. The question which remains is whether training the barefoot condition or running barefoot on soft surfaces may replicate the shoe without orthotic condition over time? Ultimately, the quest of barefoot runners is to attain the super-human feats of the Tarahumara runners

Bare Foot Running literature

Patellofemoral and ITB pain has been associated with increased hip adduction, hip internal rotation and reduced lumbopelvic rhythm. Investigations in 23 female habitually shod runners, comparing bare foot running with shod running, demonstrated reduced adduction, internal rotation and improved pelvic support, at initial contact and 10% stance, whilst running barefoot (MacCarthy C et al., 2015, Medicine & Science in Sports & Exercise. 47(5):1009-1016). When examining kinetic, kinematic and EMG data in AFL footballers whilst running on a treadmill in football boots (no arch support) versus running shoes with an average 10mm arch support, they found that in the latter condition there was an increase in knee, hip and ankle flexion resulting in a reduction in the peak torque thereby presumably reducing strain in the hamstring and calf muscles, which also correlated with reduced EMG activity. This may be significant in AFL where hamstring strains account for 15% of all injuries (Bartold SJ 2004, Medicine & Science in Sports & Exercise, 36(5), S167). Although a treadmill condition was used, investigators have found similar kinematic and kinetic data when comparing over gound to treadmill running provided the treadmill was reasonably stiff and speed was hel constant (Riley PO et al 2008, Medicine & Science in Sports & Exercise. 40(6):1093-1100).

.  Metabolically, no differences were found during treadmill running, using 12 healthy male subjects who had extensive barefoot running experience using a light versus heavier shoe (Franz JR et al., 2012, Medicine & Science in Sports & Exercise. 44(8):1519-1525).

Running style may also influence the nature of the contrasting attitudes and experiences of runners and pratitioners to recommending various footwear. Some runners are natural heel - toe runners, others are forefoot runners which presumably places more load on the calf muscles, whilst others are mid-foot runners. Additionally, pose running has been introduced which is a novel running style in where the acromium, greater trochanter, and lateral malleolus are aligned in stance. When 20 heal-toe runners were intsructed in midfoot and pose running it was found that the latter was associated with shorter stride lengths, smaller vertical oscillations of the sacrum and left heel markers, a neutral ankle joint at initial contact, and lower eccentric work and power absorption at the knee than occurred in either midfoot or heel-toe running (Arendse RE et al 2004, Med. Sci. Sports Exerc., Vol. 36, No. 2, pp. 272–277).

Due to the contrasting nature of running barefoot, minimalist shoe running, shoe running and using orthotics it is suggested that care and precise diagnostic procedures and clinical reasons are needed when recommending any one of these strategies. In a study of 36 expereinced male runners over a 10 week period of transition to minimilist running shoes such as the VIBRAM Five Fingers an increase in bone marrow oedema in the foot was seen suggesting a slow transition is prudent when chaning to barefoot running style (Ridge ST et al., 2013, Medicine & Science in Sports & Exercise. 45(7):1363-1368). Clearly, the practitioner needs to advise their client of the gradual change to new loading, and also the alteration in running style from a more rear foot high loading style to a more mid - forefoot loading which may be accompanied by a reduction in stride length.

Injuries

Tendons act as buffers, delay energy absorption by muscles and therefore act as attenuators and shock absorbers and hence have implications for neural control. If tendons are injured, or if a pain state exists the ability to engage the elastic components of movement is diminished. In fact, people with chronic ankle instability have been shown to have decreased energy dissipation at the knee (Terada et al 2013, Med Sc Ex Sc, 44, 11, 2120-2128). Additionally, functional ankle instability has been associated with a deficit of ecccentric invertor rather than evertor strength as a result of too little ability to control lateral displacement of the shank over the foot (Munn J, 2003, Medicine & Science in Sports & Exercise. 35(2):245-250). This then leads to the question of whether or not orthotics aid or hinder eccentric invertor activity as reduced pronation would result in less tendon displacement.  This may make those people also more likely to have injuries to the knee, hip and spine unless a precise professional guidance is followed.

Conclusions

The data demonstrates marked improvements in joint neutral positions when running using orthotics. Correlating the kinematic data with the EMG data appears to support the hypothesis that the use of orthotics may lead to more efficient running patterns, which in turn may reduce the susceptability to fatigue. Reduced fatigue may lead to reduced injuries through reduced purtubations of movement in the frontal and transverse planes. The data did not demonstrate any significant alterations in midfoot inversion/eversion in the three shoe running conditions. However, this may repesent sampling error, whereby the foot markers weren't as clearly marked as they were in the bare foot condition. Finally, the tibial rotation oscillation in the barefoot condition may reflect a somewhat externally rotated position of the tibia at heel strike and a stretch shortening cycle of various structures to bring about internal rotation of the tibia during midstance prior to external rotation at pushoff.

Ankle Rehabilitation

Tendons act as buffers, delay energy absorption by muscles and therefore act as attenuators and shock absorbers and hence have implications for neural control. If tendons are injured, or if a pain state exists the ability to engage the elastic components of movement is diminished. In fact, people with chronic ankle instability have been shown to have decreased energy dissipation at the knee (Terada et al 2013, Med Sc Ex Sc, 44, 11, 2120-2128). This makes those people more likely to have injuries to the knee, hip and spine. 

see also Inverse Dynamics of the ankle

Achilles Tendonosis (Pdf)

Sacroiliac and anterior hip dysfunction, knee valgus and foot pronation

Increased muscle tension in the adductor muscles can result in an anterior shift of the head of the femur, which is countered by increased iliacus activity resulting in anterior rotation of the innominate, with consequent counternutation and instability of the SIJ. Orthotics can be used to ameliorate knee valgus and femoral internal rotation.

Last update : 20 August 2015


 

Trending @ Back in B Physio

  • Thu 22 Dec 2016

    Ehlers Danlos Syndrome

    Is your child suffering Ehlers Danlos Syndrome? Hypermobile joints, frequent bruising, recurrent sprains and pains? Although a difficult manifestation to treat, physiotherapy can help. Joint Hypermobility Syndrome (JHS) When joint hypermobility coexists with arthralgias in >4 joints or other signs of connective tissue disorder (CTD), it is termed Joint Hypermobility Syndrome (JHS). This includes conditions such as Marfan's Syndrome and Ehlers-Danlos Syndrome and Osteogenesis imperfecta. These people are thought to have a higher proportion of type III to type I collagen, where type I collagen exhibits highly organised fibres resulting in high tensile strength, whereas type III collagen fibres are much more extensible, disorganised and occurring primarily in organs such as the gut, skin and blood vessels. The predominant presenting complaint is widespread pain lasting from a day to decades. Additional symptoms associated with joints, such as stiffness, 'feeling like a 90 year old', clicking, clunking, popping, subluxations, dislocations, instability, feeling that the joints are vulnerable, as well as symptoms affecting other tissue such as paraesthesia, tiredness, faintness, feeling unwell and suffering flu-like symptoms. Autonomic nervous system dysfunction in the form of 'dysautonomia' frequently occur. Broad paper like scars appear in the skin where wounds have healed. Other extra-articular manifestations include ocular ptosis, varicose veins, Raynauds phenomenon, neuropathies, tarsal and carpal tunnel syndrome, alterations in neuromuscular reflex action, development motor co-ordination delay (DCD), fibromyalgia, low bone density, anxiety and panic states and depression. Age, sex and gender play a role in presentaton as it appears more common in African and Asian females with a prevalence rate of between 5% and 25% . Despite this relatively high prevalence, JHS continues to be under-recognised, poorly understood and inadequately managed (Simmonds & Kerr, Manual Therapy, 2007, 12, 298-309). In my clinical experience, these people tend to move fast, rely on inertia for stability, have long muscles creating large degrees of freedom and potential kinetic energy, resembling ballistic 'floppies', and are either highly co-ordinated or clumsy. Stabilisation strategies consist of fast movements using large muscle groups. They tend to activities such as swimming, yoga, gymnastics, sprinting, strikers at soccer. Treatment has consisted of soft tissue techniques similar to those used in fibromyalgia, including but not limited to, dry needling, myofascial release and trigger point massage, kinesiotape, strapping for stability in sporting endeavours, pressure garment use such as SKINS, BSc, 2XU, venous stockings. Effectiveness of massage has been shown to be usefull in people suffering from chronic fatigue syndrome (Njjs et al 2006, Man Ther, 11, 187-91), a condition displaying several clinical similarities to people suffering from EDS-HT. Specific exercise regimes more attuned to co-ordination and stability (proprioception) than to excessive non-stabilising stretching. A multi-modal approach including muscle energy techniques, dry needling, mobilisations with movement (Mulligans), thoracic ring relocations (especially good with autonomic symptoms), hydrotherapy, herbal supplementaion such as Devils Claw, Cats Claw, Curcumin and Green Tee can all be useful in the management of this condition. Additionally, Arnica cream can also be used for bruising. Encouragment of non-weight bearing endurance activities such as swimming, and cycling to stimulate the endurance red muscle fibres over the ballistic white muscles fibres, since the latter are preferably used in this movement population. End of range movements are either avoided or done with care where stability is emphasized over mobility. People frequently complain of subluxation and dislocating knee caps and shoulders whilst undertaking a spectrum of activities from sleeping to sporting endeavours. A good friend of mine, Brazilian Physiotherapist and Researcher, Dr Abrahao Baptista, has used muscle electrical stimulation on knees and shoulders to retrain the brain to enhance muscular cortical representation which reduce the incidence of subluxations and dislocations. Abrahao wrote : "my daughter has a mild EDS III and used to dislocate her shoulder many times during sleeping.  I tried many alternatives with her, including strenghtening exercises and education to prevent bad postures before sleeping (e.g. positioning her arm over her head).  What we found to really help her was electrostimulation of the supraspinatus and posterior deltoid.  I followed the ideas of some works from Michael Ridding and others (Clinical Neurophysiology, 112, 1461-1469, 2001; Exp Brain Research, 143, 342-349 ,2002), which show that 30Hz electrostim, provoking mild muscle contractions for 45' leads to increased excitability of the muscle representation in the brain (at the primary motor cortex).  Stimulation of the supraspinatus and deltoid is an old technique to hemiplegic painful shoulder, but used with a little different parameters.  Previous studies showed that this type of stimulation increases brain excitability for 3 days, and so we used two times a week, for two weeks.  After that, her discolcations improved a lot.  It is important to note that, during stimulation, you have to clearly see the humerus head going up to the glenoid fossa" Surgery : The effect of surgical intervention has been shown to be favourable in only a limited percentage of patients (33.9% Rombaut et al 2011, Arch Phys Med Rehab, 92, 1106-1112). Three basic problems arise. First, tissues are less robust; Second, blood vessel fragility can cause technical problems in wound closure; Third, healing is often delayed and may remain incomplete.  Voluntary Posterior Shoulder Subluxation : Clinical Presentation A 27 year old male presented with a history of posterior shoulder weakness, characterised by severe fatigue and heaviness when 'working out' at the gym. His usual routine was one which involved sets of 15 repetitions, hence endurance oriented rather than power oriented. He described major problems when trying to execute bench presses and Japanese style push ups.  https://youtu.be/4rj-4TWogFU In a comprehensive review of 300 articles on shoulder instability, Heller et al. (Heller, K. D., J. Forst, R. Forst, and B. Cohen. Posterior dislocation of the shoulder: recommendations for a classification. Arch. Orthop. Trauma Surg. 113:228-231, 1994) concluded that posterior dislocation constitutes only 2.1% of all shoulder dislocations. The differential diagnosis in patients with posterior instability of the shoulder includes traumatic posterior instability, atraumatic posterior instability, voluntary posterior instability, and posterior instability associated with multidirectional instability. Laxity testing was performed with a posterior draw sign. The laxity was graded with a modified Hawkins scale : grade I, humeral head displacement that locks out beyond the glenoid rim; grade II, humeral displacement that is over the glenoid rim but is easily reducable; and grade III, humeral head displacement that locks out beyond the glenoid rim. This client had grade III laxity in both shoulders. A sulcus sign test was performed on both shoulders and graded to commonly accepted grading scales: grade I, a depression <1cm: grade 2, between 1.5 and 2cm; and grade 3, a depression > 2cm. The client had a grade 3 sulcus sign bilaterally regardless if the arm was in neutral or external rotation. The client met the criteria of Carter and Wilkinson for generalized liagmentous laxity by exhibiting hyperextension of both elbows > 10o, genu recurvatum of both knees > 19o, and the ability to touch his thumbto his forearm Headaches Jacome (1999, Cephalagia, 19, 791-796) reported that migraine headaches occured in 11/18 patients with EDS. Hakim et al (2004, Rheumatology, 43, 1194-1195) found 40% of 170 patients with EDS-HT/JHS had previously been diagnosed with migraine compared with 20% of the control population. in addition, the frequency of migraine attacks was 1.7 times increased and the headache related disability was 3.0 times greater in migraineurs with EDS-HT/JHS as compared to controls with migraine (Bendick et al 2011, Cephalgia, 31, 603-613). People suffering from soft tissue hypermobility, connective tissue disorder, Marfans Syndrome, and Ehler Danlos syndrome may be predisposed to upper cervical spine instability. Dural laxity, vascular irregularities and ligamentous laxity with or without Arnold Chiari Malformations may be accompanied by symptoms of intracranial hypotension, POTS (postural orthostatic tachycardia syndrome), dysautonomia, suboccipital "Coat Hanger" headaches (Martin & Neilson 2014 Headaches, September, 1403-1411). Scoliosis and spondylolisthesis occurs in 63% and 6-15% of patients with Marfans syndrome repsectively (Sponseller et al 1995, JBJS Am, 77, 867-876). These manifestations need to be borne in mind as not all upper cervical spine instabilities are the result of trauma. Clinically, serious neurological complications can arise in the presence of upper cervical spine instability, including a stroke or even death. Additionally, vertebral artery and even carotid artery dissections have been reported during and after chiropractic manipulation. Added caution may be needed after Whiplash type injuries. The clinician needs to be aware of this possibility in the presence of these symptoms, assess upper cervical joint hypermobility with manual therapy techniques and treat appropriately, including exercises to improve the control of musculature around the cervical and thoracic spine. Atlantoaxial instability can be diagnosed by flexion/extension X-rays or MRI's, but is best evaluated by using rotational 3D CT scanning. Surgical intervention is sometimes necessary. Temperomandibular Joint (TMJ) Disorders The prevelence of TMJ disorders have been reported to be as high as 80% in people with JHD (Kavucu et al 2006, Rheum Int., 26, 257-260). Joint clicking of the TMJ was 1.7 times more likely in JHD than in controls (Hirsch et al 2008, Eur J Oral Sci, 116, 525-539). Headaches associated with TMJ disorders tend to be in the temporal/masseter (side of head) region. TMJ issues increase in prevelence in the presence of both migraine and chronic daily headache (Goncalves et al 2011, Clin J Pain, 27, 611-615). I've treated a colleague who spontaneously dislocated her jaw whilst yawning at work one morning. stressful for me and her! Generally, people with JHD have increased jaw opening (>40mm from upper to lower incisors). Updated 18 May 2017  Read More
  • Fri 09 Dec 2016

    Physiotherapy with Sharna Hinchliff

    Physiotherapy with Sharna Hinchliff    Martin is pleased to welcome the very experienced physiotherapist Sharna Hinchliff to Back in Business Physiotherapy for one on one physiotherapy sessions with clients in 2017.  Sharna is a passionate triathelete and mother and has had several years experience working locally and internationally (New York and London) in the field of physiotherapy. Originally from Western Australia, Sharna graduated from the world renowned Masters of Manipulative Physiotherapy at Curtin University. read more Read More
  • Mon 07 Nov 2016

    Pilates – with Brunna Cardoso

    Pilates – with Brunna Cardoso Martin is pleased to welcome the bubbly Brunna Cardoso to Back in Business Physiotherapy for Pilates Classes in February 2017.  Brunno is an experienced pilates instructor and has had several years experience training with pilates instructors in Brazil. Read more Read More

Funding, Advertising and Linking Policy

This site is set up as a free of charge service to the community. Back in Business Physiotherapy pays for all aspects of this website and does not endorse any paid advertising on this site. Back in Business Physiotherapy does have an affiliate program with Lunar pages who host this website. Additionally, the links to Human Kinetics and Amazon may result in Back in Business Physiotherapy receiving a small commission for precisely those books if purchased on those sites. Links to other sites are based on the relevance of that sites information to the principles of this websites desire to enhance the standards of Physiotherapy. Unless I am the author of the content of a linked site, these links are not based on reciprocal agreements. No banner adds or pop-ups should appear on your browser as a result of browsing this website. However, if you leave this website to a related one, Back in Business Physiotherapy cannot accept responsibility for neither changes in their contents nor their advertising or privacy policies.

image removed

Updated : 10 May 2014

No responsibility is assumed by Back in Business Physiotherapy for any injury and/or damage to persons or property as a matter of product liability, negligence, or from any use of any methods, products, instruction, or ideas contained in the material in this and it's related websites. Because of rapid advances in the medical sciences, the author recommends that there should be independent verification of diagnoses and exercise prescription. The information provided on Back in Business Physiotherapy is designed to support, not replace, the relationship that exists between a patient/site visitor and their treating health professional.

Copyright Martin Krause 1999 - material is presented as a free educational resource however all intellectual property rights should be acknowledged and respected