Bookmark and Share

Call us now at: 02 9922 6806

appointment times

Muscle Energy Techniques

Back, Pelvic Girdle and Hip Pain

by Martin Krause

At Back in Business Physiotherapy, we view the pelvis and spine as sitting in a sling of muscles, like a hammock evenly balanced with tension to allow multiple directions of movement without compromising it's stability. Hence, we use a comprehensive analysis with muscle energy techniques, movement analysis, joint mobilisations, soft tissue manipulation and taping to optimise home and gym based exercise regimes. Please read on for more details

List of Contents


Joint Hypermobility Syndrome (JHS)

Sacroiliac Joint and Muscle Energy Techniques

Clinical Reasoning and Motor Control

Lumbar Spine Kinematics

Pelvic Kinematics

Pelvis and Gait Cycle

Sacrotuberal Ligament

Pelvic Torsion

Upslips & Downslips

Sacral Torsion

Pubic Symphysis


Pelvic Floor

Hip - acetabluar retroversion (CAM and Pincer lesions)

Muscle energy techniques (MET)

Myofascial Trigger Points

Fibroblasts and loose Connective Tissue

Immune System and Vibration and Growth Hormone

Clinical example of sacroiliac pain


Pelvic girdle and low back pain have fallen under the diagnostic umbrella of non-specific low back pain (NSLBP). Consequently, a misconception that any exercise is good exercise was created. It is true that low back pain can have it's etiology in pelvic girdle mal-alignment, and similarly low back pain with neural irritation can lead to inco-ordination of muscles causing pelvic mal-alignment. However, clinically there appears to be very little non-specific about such problems. Traditionally, manual therapists have viewed impairment as loss of range of motion and/or perceived stiffness on joint mobilization. However, when considering low back pain and pelvic girdle dysfunction, the effects of muscular force transduction are becoming more evident as being an important impairment variable. The clinician needs to be aware of Newton's third law of 'action-reaction', the effects of inverse dynamics and the desire for symmetrical and appropriately timed force dissipation ('damping' and 'propagation') by supporting musculature. Sometimes these are referred to as 'neuromuscular vectors'. Essentially, efficiency of movement is the desired outcome of any movement strategy, whereby muscles are considered as a series of slings acting across joints with differing movement functions. Most of us have experienced the stiffness and awkwardness of movement when learning a novel task. Pain and dysfunction and/or inappropriate physiotherapy can result in excessive stiffness, which compromises the 'fluidity' and range of movement. Hence, such stiffness is the result of non-optimal neuro-muscular firing, rather than passive stiffness based on adhesions, scar tissue or degenerative changes. Good clinical assessment with the application of appropriate muscle energy, manual therapy, soft tissue massage and dry needling techniques for reduction of pain and muscle spasms, as well as appropriate exercise prescription for strength, endurance and motor control can be used as a management strategy whilst simultaneously ascertaining the 'cause of the cause' of dysfunction. Therefore, don't just rush into a Swiss Ball regime.

It is important to understand that motor inco-ordination in the pelvic girdle can be the result of peripheral and/or central mechanisms. Peripheral mechanisms include reflexogenic muscle spasms whilst central mechanisms include cortical inhibition of muscles and/or delayed central transmission due to noxious input affecting intra-cortical synergistic control between various cerebral, cerebellar and mid brain regions of the central nervous system (CNS). Altered proprioceptive input can result in an inaccurate 'virtual body concept of self' resulting in inaccurate feedback during the execution of motor tasks. Attention, stress and fear can inpact motor planning through altered perceptions of task demand and the environment where the execution of the task is to take place.



Build strength and flexibility in stages. The deeper the foundations of motor learning the stronger and greater the scope of adaptation during recovery. Remember there are 3 stages of learning, where the first stage is the cognitive stage in which fundamental movement patterns need to be learnt in the most basic positions of neutral. Then comes the associative stage whereby more dynamic activity or prolonged static postures can be practiced before arriving at the autonomous stage of learning (Fits & Possner 1967, Gentile 1972). Activation of low threshold muscles first, small movements and lots of cognitive motor control. Additionally, deactivation of global muscles and improved timing are frequently early priorities. Later goals may include performance enhancement for return to sport, whereby intramuscular and intermuscular control between and deep stabilising and superficial ballistic muscles is trained using functional exercises which may include the Swiss Ball.

Importantly, determine whether the person is inherently a 'floppy', 'stiffy' or 'flippy-floppy'. The goal with stiff people will be to improve range of motion and acquire control of global muscle timing. Hereby, reducing intra-abdominal and intra-discal pressure. The goal with floppy people will be to enhance stability through co-ordination and improved endurance. Hereby, improving cognitive motor control. Don't get trapped by exacerbating a persons condition, who appears to be stiff, yet has an underlying functional instability. Ask them whether they used to be really flexible as a child or prior to the onset of dysfunction. Also screen for trauma which could have resulted in some functional (and even structural) instability such as lumbar - thoracic spine hyper-flexion-extension from a 'whiplash type' injury such as high speed skiing, marshal arts, etc. Ultimate aims will be to improve lumbo-pelvic dynamics by optimising 'form & force closure' around the symphasis pubis & sacro-iliac joints.

Joint Hypermobility Syndrome (JHS)

includes conditions such as Marfan's Syndrome and Ehlers-Danlos Syndrome and Osteogenesis imperfecta. These people are thought to have a higher proportion of type III to type I collagen, where type I collagen exhibits high tensile strength, whilst type III collagen is much more extensible and disorganised and occuring in organs such as the gut, skin and blood vessels. The predominant presenting complaint is widespread pain lasting from day to decades. Additional symptoms associated with joints, such as stiffness, 'feeling like a 90 year old', clicking, clunking, popping, subluxations, dislocations, instability, feeling that the joints are vulnerable, as well as symptoms affecting other tissue such as paraesthesia, tiredness, faintness, feeling unwell and suffering flu-like symptoms. Autonomic nervous system dysfunction in the form of 'dysautonomia' frequently occur. Broad paper like scars appear in the skin where wounds have healed. Other extra-articular manifestations include ocular ptosis, varicose veins, Raynauds phenomenon, neuropathies, tarsal and carpal tunnel syndrome, alterations in neuromuscular reflex action, development motor co-ordination delay (DCD), fibromyalgia, low bone density, anxiety and panic states and depression. Age, sex and gender play a role in presentaton as it appears more common in African and Asian females with a prevalence rate of between 5% and 25% . Despite this relatively high prevalence, JHS continues to be under-recognised, poorly understood and inadequately managed (Simmonds & Kerr, Manual Therapy, 2007, 12, 298-309). These people tend to move fast, rely on inertia for stability, have long muscles creating large degrees of freedom and potential kinetic energy, where they become the ballistic 'floppies', and either highly co-ordinated or clumsy. There deosn't seem to be in my clincial exprience an in-between. Treatment has consisted of soft tissue techniques similar to those used in fibromyalgia, including but not limited to, dry needling, myofacscial release and trigger point massage, kinesiotape, strapping for stability in sporting endeavours, pressure garment use such as SKINS, BSc, 2XU, venous stockings. Specific exercise regimes more atuned to co-ordination and stability than to excessive non-stabilising stretching, muscle energy techniques, mobilisatinos with movement (Mulligans), thoracic ring relocations (especially good with autonomic symtoms), hydrotherapy, herbal supplementaion such as Devils Claw, Cats Claw, Curcumin and Green Tee. Arnica cream for bruising. Encouragment of non-weight bearing endurance activities such as swimming, and cycling to stimuate the red muscle fibres over the ballistic white muscles fibres, since the latter are preferably used in this movement population. Care and even avoidance of end range movement activity. My good friend Abrahao Baptisita, Brazilian Physiotherapist and researcher, recommends the use of muscle stimulation brain retraining for the prevention of shoulder dislocations - subluxations and patella (knee cap) dislocations.

Sacroiliac Joint

The sacroiliac or pelvic joint is not your typical joint. Rather than being made up of two bones and fibrous tissue encapsulating synovial fluid whose primary function is acting a 'pulley' to muscle action, the sacroiliac joint is a ligamentous fibrous non-conforming articulation with varying degrees of movement depending upon gender and collagen fibre type. A young person with JHS tend to be on one end of the SIJ movement spectrum whereas an elderly man would be on the other end.

Broad categories of pelvic dysfunction

There are five broad categories of pelvic dysfunction. Some are more common than others. It is important to try to ascertain which dysfunction is present as it will influence treatment and exercise prescription decisions. For example, an 'inflare' may be exacerbated by deep abdominal exercise, an 'outflare' may be exacerbated by hip external rotation exercises, 'downslips' usually don't like traction, and 'upslips' are often confused with 'counternutation'. Both in 'upslips' and 'downslips' the history and mechanism of injury become important.

Pelvic Malalignment

What constitutes normal and abnormal pelvic alignment? Trauma and muscle imbalance can cause mal-alignment. Normal walking also may constitute asymmetry which isn't pathological. Additionally, I find clinically it is better to think of ilial alignment, as the sacrum is much smaller, only has one direct muscle attachment and is somewhat hard to conceptualise. Although biomechanical purist will probably find the reductionism here simplistic and not eintirely correct, the following video will hopefully clarify why it's easier, clinically, to assess the ilia.


Assessment of the Sacro-iliac Joint should include

  • Patrick - FABER test : the patient lies supine on the table, and the examiner stands next to him/her. The examiner brings the ipsilateral hip into flexion, abduction, external rotation so the heel is on the contralateral knee. The examiner fixates the contralateral ASIS and applies pressure on the subjects flexed knee. The test is positive when similar buttock or groin pain below L5 is reproduced (Kokmeyer et al JMPT 2002, 25, 1, 42-8)

  • ThighThrust or posterior shear test : the subject lies supine on the table. The examiner flexes the hip and knee so that the hip is at approx 90degrees flexion and slight adduction and the thigh is at right angles to the table with the knee remaining relaxed. One of the examiners hands cups the sacrum and the other arm wraps around the flexed knee. The axial pressure applied is directed through the long axis of the femur, which causes anterior ot posterior shear to the SIJ. The test is positive when familiar pain is provoked over the posterior aspect of the SIJ below L5 (Kokmeyer et al 2002, Laslett et al 2003, 2005)

  • Restricted abduction test : the subject is positioned in supine with the leg fully extended and abducted to 30degrees. The examiner holds the ankle and pushes medially while the subject pushes laterally. The test is positve when similar pain is produced over the SIJ below L5 (Broadhurst & Bond, J Spinal Dis, 1998, 11, 4, 341-5). These authors claimed 87% sensitivity and 100% reliability for this test.

  • Standing flexion test : is performed by palpating the PSISs whilst the subject is bending forward from the standing position. The test is negative where both PSISs move the same amount and positive where one PSIS moves further cranially than the other which means limited movement of the sacrum on the ilium on the side of the superior PSIS (Potter & Rothstein. Physical Therapy,1985, 65, 11, 1671-5)

  • Sitting flexion test : is performed as in standing
  • One leg standing : is a very useful test for ascertaining Intra Pelvic Torsion (IPT) where weight shift onto one leg is accompanied by anterior shift of the head of the femur. Frequently, an anterior position of the head can be seen in biped standing when palpating from the side. Palpation for increased adductor tone can also be useful to confirm this hypothesis. Increased adductor tone can also later be palpated in supine before testing ASLR. Furthermore, during the standing lumbopelvic flexion test, palpation for anterior positioning of the head whilst simulataneously palpating for counternutation of the SIJ can be useful in determining which comes first - the IPT or the anterior position of the head of femur. Finally, attempts at improved motor control through horizontal fibres of internal oblique & transverse abdominis activation with lateral weight shifting should result in spontaneous improvements in gluteus medius activation, whilst adductor tone should remain low. Besides LBP and Pelvic Girdle Pain (PGP), this can also be an important consideration in someone presenting with lateral hip pain whereby lack of deep core activation and hence gluteus medius activation results in excessive use of the ITB and Tfl. In terms of motor control it is important to recognise that the muscles which contract prior to the onset of movement should be the stabilizers = muscle of anticipation. If a 'prime mover' muscle initiates the movement then it will become the dominant muscle in that synergy of movement. Hence, if the adductor initiates movement it will result in an anterior draw of the head of femur potentially resulting in anterior hip pain, internal rotation and medial knee pain as well as possibly inducing over pronation and/or porlonged pronation in the foot. Additionally, the adductor may rotate the pelvis ipsilaterally in the horizontal plane, inhibit the glutues medius resulting in reduced lumbo-pelvic rhythm. Whether the adductor is responsible for anterior rotation of the ilium (counter-nutation) (anterior hip pain resulting in muscle spasms of the ilicus) and hence intra-pelvic torsion or is a result of counter-nutation can be assessed clinically by palpation of the SIJ-Ilia and the anterior hip-adductor and determining which occurs first.

  • Gillet Test : is performed in 1 leg standing whilst the subject pulls their knee up to their chest. A normal result would be for the PSIS to move inferiorly. If the PSIS remains at the same level or drops only slightly or even moves superiorly this is considered as a positive test

  • Prone Knee Flexion test : is performed with the patient prone. While the examiner holds both heels, the patients knees are flexed to 90degrees. The leg lengths are compared by examining the left and right soles of the feet in the prone extended and flexed positions. If one leg appears shorter in extension and lengthens in flexion implies an hypothesised posterior ilial rotation (Potter & Rothstein 1985)

Arab et al (Manual Therapy, 14, 213-221) demonstrated fair to substantial inter and intra-rater reliability for individual tests, moderate to excellent reliability for clusters,and substantial to excellent reliability for composites of the above motion palpation and provocation tests

  • Stork test : is performed standing on 1 leg as the subject moves the 90 degree flexed knee into hip flexion and hip extension. The PSISs are palpated w.r.t the sacrum and L4. With the hip moving into flexion, inferior movement of the PSIS and ipsilateral rotation of the L4 is expected. With the hip moving into extension, superior movement of the PSIS and contralateral rotation or no movement of the L4 is expected. Hip hitching can also be tested in this position.

  • Active Hip Extension test : involves the client prone and extending their straight leg at the hip. Frequently, clients with LBP and PGP present with reversed gluteal : hamstring timing whereby the hamstrings are dominant. The addition of compression anteriorly or posteriorly can glean information w.r.t force closure. A positve result would be improved timing of contraction of the Gluteus Maximus over the hamstrings. Additionally, a reduction in pain and/or the movement feeling easier 'lighter' to do may also occur. Takasaki et al (Manual Therapy, 2009, 14, 484-489) found that the addition of 50N and 100N anterior compression resulted in the gluteus maximus coming on sooner (263+-99.5ms vs 183.5+-77.9ms vs 91.5+-49.7ms). Improvements with anterior compression may mean the need for transverse abdominus training. Worsening with anterior compression may mean excessive transverse abdominus contraction. Improvements with posterior compression may indicate the need for deep Multifidus (MF) muscle training. Combinations of anterior and posterior compressionon the ilia resulting in improvements may indicate the need for combined deep MF and Transverse Abdominus training. Compression of the thorax and/or elevation/depression, transverse gliding of specific rib rings can also be used. Palpation for tension in the erector spinae muscles of the L/S and T/S as well as using a 'squeezing technique' around the trigger point of tension may also improve Active Hip/Leg Extension suggesting the need to use techniques (such as relaxation through awareness, trigger point dry needling, fascial release, kinesiotaping, etc) to reduce excessive muscle tension



Therefore ideally, gluteal activation occurs prior to or simultaneously with hamstring activation. Where this does not occur, the therapist should consider

- posterior capsule tightness resulting in anterior translation of the head of femur with gluteal activation (hence reflexogenic inhibition)

- anterior rotation of the ilia (counternutation)

- ischioccocygeus spasms and outflare of the ilia

- neuropathy affecting the gluteal nerves

- excessive psoas major activity

- excessive ribcage tightness and hence sympathetic nervous system activity resulting in firing of the hamstrings (these people will say that no matter how much they stretch they still feel that their muscles are tight)

- intra cortical dyskinesia (see Chronic Low Back Pain for more details)

  • ALE and Isometric Latissimus Dorsi testing for force closure :



  • Prone Figure of 4 Test: involves the client in prone. The knee is bent to 90degrees and the hip is rotated externally, the hip can also be abducted and finally a combination of abduction and external rotation can be made with the knee at 90degrees flexion. These manouvers result in saggital and transverse iliac rotation in 18-35 year olds (Bussey et al, Manual Therapy, 2009, 14, 520-525)
  • Gaenslen's Test : useful test for psoas major length and with some adaptation rectus femoris length.

It should be noted that people who have medial knee pain on hip extension may have referred pain from an irritated pubic symphasis

  • Supine -> Sitting Test : originally described by DonTigny (1997) it involves assessing leg lengths in supine and in long sitting. The patient is aided to sitting by puling up with their outstretched hands, so as not to involve the abdominal muscles and to avoid pelvic twisting. Outflares and Inflares should remain unaffected by this test. Leg length discrepency should also remain unchanged from either supine or sitting. During an 'upslip' the affected side will appear to be shorter in either position. The reverse will be true fo a 'downslip'. With rotational malalignment the pelvis no longer moves as a unit. With anterior rotation on the right and posterior rotation of the innominate on the left, the pelvis rotates in the transverse plane to the right creating an apparent shorter right leg in sitting. Note that it is the relative shortening which is important. (Shamberger 2002)

Generally there is little evidence to support the use of the Gillet test, standing flexion test, sitting flexion test, or supine-to-sit test to differentiate between subjects with and without static innominate torsion (Pamela K Levangie 1999, PHYS THER Vol. 79, No. 11, November 1999, pp. 1043-1057). However, these tests in my opinion are easy to do and may provide some useful information when examined in the context of the entire clinical picture. Certainly, in some sports such as cycling and rowing the supine -> sit may provide very useful information when exmined in that context.

Assessment of peripheral strength and flexibility is essential before commencing any Swiss Ball exercises or any other training regime. Symmetry in alignment and muscle balance (endurance versus strength) are important aspects for attaining motor control -

remember the analytical physiotherapist should use their 'clinical reasoning' skills to take into account the entire clinical picture

are the muscles short and weak and therefore require strengthening, stretching and power ( i.e. bulk)?

are the muscles long and weak and therefore require endurance for stability ? (remember 'floppies' generally don't like endurance exercise - they prefer ballistic sprinting type of activities)

are there muscles which are over-dominant and therefore require enhanced timing and co-ordination?

for example the static assessment of the influence of the hamstrings, tensor fascia lata and rectus femoris on the pelvic tilt (anterior, posterior and lateral),

in terms of motor control, Bernstein's perspective suggests that the constraints of movement are the 'degrees of freedom' which the central nervous system allows for safe and efficient movement to take place. When considering neuro-linguistic programming (NLP), this tautology of words presents an interesting aspect of communication and goal setting for the physiotherapist. Also don't invoke 'fear' in your clients by using 'instability' without adequate explanations.

An adapted Geoff Maitland approach to stability and function, incorporating a modified concept of 'degrees of freedom', where the clients reaction to pain determines functional ability.


note the excessive scoliosis from the TFL stretch!!!!!

note the excessive posterior pelvic tilt from the hamstring stretch!!!

are the hamies and quads tight because they are weak?

- remember the peroneals, the lateral hamstrings (biceps), the sacrotuberous ligament, erector spinae and deep thoracolumbar fascia are functionally continuous (Dianne Lee 1999)

Following a static assessment, dynamic movement analysis should occur. How does the client walk, run, lift, swim? What is the lumbo-pelvic control and what is the timing between the muscles? For example, do the hamstrings activate before the gluteus maximus? This is frequently the case in hamstring dominant people or people with an anterior iliac rotation whereby counternutation of the SIJ seems to inhibit the gluteus maximus. On the other hand posterior pelvic tilt may be the result of excessive hamstring and rectus abdominis - external oblique activity and a dysfunctional kyphotis low lumbar spine (flexion impairment) whilst anterior pelvic tilt is the result of excessive erector spinae activity (active extension impairment). What is the timing between the erector spinae muscles with arm movements and rocking movements? Can this timing be enhanced by activation of pelvic floor muscles? Is there reduced hip extension (due to increased Iliopsoas activity) causing ipsilateral pelvic rotation (in the horizontal plane) resulting in shortening of the contralateral piriformis muscle? This latter scenario may be accompanied with ipsilaterally reduced Prone Knee Bend (PKB) and reduced contralateral Straight Leg Raise (SLR). When extending the hip in prone with a flexed knee does the lumbar spine hyperextend at an unstable segment or rock to one side as can occur with an 'active extension impairment' with it's mal-adaptive spinal stabilising coactivation of erector spinae and iliopsoas?

Any movement discrepancy observed , should be confirmed using special tests such as one leg standing - pelvic control. Additionally, manual muscle testing as well as muscle energy techniques, myofascial dry-needling and joint mobilisations can confirm or negate the 'working hypothesis' of what is causing the dysfunction. The physiotherapist needs to engage the client, thereby educating them to a point where they are able to do their own assessment of the efficacy of any exercise regime or treatment intervention.

reinforcement of shoulder rotation (throwing action) with transverse abdominis activation

- note pelvic tilt and external rotation of stance leg: ?due to tight piriformis and weak gluteus maximus? ?due to hip stiffness? ?due to weak gluteus medius and weak hip rotators?

muscle energy techniques {MET} (gentle [<20%max] and only 3 reps for approx 10 secs)

rectus femoris and iliopsoas

The iliopsoas is frequently regarded as a key player in the compromise of hip extension, lumbar spine lateral flexion, flexion and/or extension. Although clinically, MET's to the iliopsoas can be very useful for restoring lumbar range of movement, there is little evidence to suggest that the iliosoas is tight, too strong or too weak. Similarly, in the abscence of an 'upslip' there is little evidence to suggest it's involvement in anterior pelvic tilt, rather it is more likely to be a posterior pelvic tilter. When separating the two muscles, the iliacus has an anterior rotation affect on the ilium (counternutation), whereas the psoas major has a posterior rotating affect on the ilium. Additionally, the iliacus muscle and posterio-medial aspect of the psoas major are more linkley to have stabilising functions as they are close to the joint and hence axis of rotation, whereas the antero-lateral psoas major may have a largely mobilising-power generating function. If this is the case, then the iliopsoas may be involved with functional synergies which involve the superficial abdominal muscles in maintaining the pelvic neutral position. When a forward/backward rocking motion is performed in standing, the erector spinae and superficial abdominal muscles exhibit reciprocal timing suggesting that the duration of the considerable compressive force generated by the erector spinae can be reduced in the lumbar spine through enhanced superficial abdominal muscle timing. Similarly, reduced erector spinae and enhanced superficial abdominal activity may reduce the amount of compressive forces (excessive force closure) generated on the lumber intervertebral discs. However, more ideally, it is the non-torque producing muscles of the abdominal cavity such as the horizontal fibres of interanl oblique and transverse abdominis as well as the deep fibres of multifidus which maintain lumbar spine neutral posture. By reducing the activation of both superficial abdominals and erector spinae it may be possible for the low threshold muscles to function during postural and endurance activities. During high threshold dynamic exercise such as running, transverse excursion of the diaphragm becomes essential to efficient movement as abdominal expansion may lead to loss of pelvic control. Since the oblique abdominal muscles arise from the lower 6 ribs, the oblique abdominal muscles require adequate length for inferior lateral chest expansion to take place. Notably, the low thoracic spine is covered by the pars thoracic aspect of the erector spinae and hence these muscles require sufficient relaxation for rib excursion to take place. Therefore, it makes sense for the iliopsoas to provide powerful hip/lumbopelvic stability, in a functional synergy with the gluteal muscles during activities such as sprinting and hill running. Despite these paradoxes, it is highly likely that the clinical effect of MET's on the iliopsoas is a proprioceptive one, rebalancing the stabilising synergies of the hip and lumbar spine. Importantly, by including inferior lateral breathing in an iliopsoas release, the therapist will be able to glean the importance of incorrect breathing to the dysfunction. Realistically, the clinical reasoning process allows for such areas of uncertainty by using the correlation between the impairment and disability measures to assess the validity of involving the iliopsoas muscle in the treatment process.



Myofascial dry needling techniques can also be used to reduce muscle tension (spasms) in the superior gluteus maximus, rectus femoris, vastus lateralis/ITB/Tfl, adductor and piriformis muscles.

Additionally, the ilium should be examined for outflares and a tight piriformis, or inflares and a tight iliacus. If both piriformi are contracted then forward flexion may be very difficult. Muscle energy techniques can be used on these muscles. Additionally, adductor longus should be assessed together with the medial hamstrings. Remember, what is tight may also be weak. Therefore, do not increase ROM at the expense of stability. Adductor longus and contralateral external oblique form a functional sling (Diane Lee 1999). Don't forget that the adductor muscles have trigger points which can refer pain into the anus and genital areas (see Travel & Simmons).

Lumbar Spine - Pelvic Kinematics


Sacral nutation & counternutation

Sacral nutation and counternuation are considered normal events during flexion and extension in standing. It should be noted that counternutation of the sacrum generally occurs beyond 45degrees flexion (some variation between individuals and pathology) and is a movement of the innominates relative to the sacrum. In extension the reverse occurs whereby the ilia rotate posteriorly w.r.t the sacrum resulting in nutation. During extension in sitting, initially the ilia do not rotate whilst the sacrum nutates until all the slack is taken up by the ligaments and pelvic floor muscles at which point the ilia will begin to rotate anteriorly.

Gait Cycle and Pelvic Rotation

Posterior and lateral view of gait - rotation and counter-rotation of the sacrum/pelvis and spine. As the innominate rotates anteriorly it pushes the sacrum forward on that side so that by toe off the sacrum is rotating in the opposite direction to the pelvis. In the above example, the pelvis rotates to the left as the left leg goes 'swing phase' extension, this pushes the left innominate against the left side of the sacrum, thereby creating right sacral rotation (the exact opposite of pelvic rotation). Lateral tilt is controlled through the medial and lateral slings, whilst the pelvic rotation is controlled by the elements making up the 'spiral sling' (a combination of anterior, posterior and medial-lateral). Inherent in this mechanism are also the hip external rotators, which through the connection of the myofascia and obturator internis, engages the pelvic floor in a stabilising activity.  

Heel strike is accompanied by a 'locking mechanism' whereby the posterior rotation of the innominate (ilium) is locked with the sacrum through muscular elements on the stance side and the forward push of the opposite innominate (ilium) on the sacrum, on the swing side. Hence as one side goes into 'toe off' 'unlocking' and swing phase, a constant torsion in the sacrum will occur. The amount of sacral torsion will vary depending on ligamentous laxity, muscle balance, terraine and stride length. The Hamstring mechansim across the sacrotuberous and long dorsal ligament contributes to the 'locking' through the 'posterior sling'. During the transition to the unlocking phase anterior 'slings' become important. Mid stance requires control of rotation and pelvic tilt. The inverse dynamics of the kinetic chain of the lower limb mean that every element (Foot -> Pelvis) needs to be considered when assessing pelvic dysfunction.

Posterior view of innominate anterior and posterior rotation, from mid stance to hip extension the sacrum commences to rotate in the opposite direction to the rotation of the pelvis

Anterior innominate rotation with hip extension coincides with ipsilateral pelvic rotation, contralateral spinal lateral flexion and contralateral spinal rotation. Anterior innominate rotation encourages contralateral L4 rotation through attachments of the ilio-lumbar ligaments, which is in turn accompanied by the posterior ilial rotation on the opposite side.These movements occur around an oblique axis. In the above example rotation around the right oblique axis results in a 'counter-rotation' action whereby the right anterior ilial rotation is accompanied by a 'counterlocking' left posterior ilial rotation. As the right hip moves into extension, anterior rotation of the right ilia results in contralateral left sacral torsion (whilst the pelvis is still rotating to the right). The posterior rotation of the left ilia stabilises the left SIJ joint in preparation for heel strike through the tightening of the right sacrotuberous, sacrospinous and interosseous ligaments. The continuation of the biceps femoris mechanism with the sacrotuberous ligament may also act as a mechanical stabiliser. Alternatively, it may be that the sacrotuberous ligament provides powerful proprioceptive input for the biceps femoris. Furthermore, in cases of dysfunction, mechanical hyperalgesia of the sacrotuberous ligament may contribute to reflexogenic muscle spasms in the biceps femoris. This can set up a viscious cycle whereby one perpetuates the other, as shortening and/or incorrect timing of the biceps femoris may result in increased mechanical input (tension) on the sacrotuberal ligament. This can create additional problems elsewhere such as the posterior lateral knee, peroneal nerve, both SIJ's and in the spine.

Confusing? Just remember that the sacrum torsions in the opposite direction to pelvic rotation due to hip extension (and rotation) forces on the ilium

The sacrotuberous ligment also has strong connections with the posterior thoracolumbar fascia, and muscular attachments of gluteus maximus and piriformis. Hereby, the biceps femoris, the GM and the piriformis can increase ligamentous tension.

As the leg moves into extension, counternutation occurs (in this example on the left) resulting in right sacral torsion but with left pelvic rotation in the horizontal plane

L4 rotation can be tested during 'the stork' test through palpation of the spinous process of L4 and sacral sulcus during long striding. Additionally, control over lateral pelvic tilting on the stance leg can also be tested in various positions of flexion and extension whilst palpating the L4 in order to ascertain any mal-rotation suggesting some unstable L4 element. The L5 can almost be considered the 'meat in the sandwich' of sacral torsions (especially backward ones : left on right, right on left), ilial anterior rotations and L4 mal-rotations affect the bood vessels, nerves and articular processes of the L5.

Pelvic Ring Distortion

Frequently, these people present with an apparent or real leg length discrepency and are sometimes confused for an upslip. Examine people in standing from the front and behind. Make sure you are symmetrical to the persons landmarks. Also be certain which is your dominant eye - use the photographers square fingers technique and determine with which eye there is least movement from the centre of the square when both eyes are open compared to one eye shut. Additionally, try to glide the hip anteriorly and posteriorly with more and less weight bearing. The hip will appear to glide further posteriorly on the side of anterior innominate rotation. Generally, the entire pelvis will look like it is rotated.

Upslips and Downslips

Upslips: can be the result of a sudden vertical force through the outstretched leg for example when stepping into a pot hole, landing awkwardly during a jump or when running. car accidents where the persons foot is on the brake and the force goes up longitudinally through the thigh is also a common mechanism of an upslip. Upslips are generally accompanied by counternutation of the sacrum (anterior rotation of the innominate) which results in tension of the long dorsal sacroiliac ligament. Tightness in the quadratus lumborum and psoas major may contribute to an upslip.

It should be noted that the attachment of the biceps femoris muscle is intimately linked with the continuation of the sacrotuberous ligament and hence can be considered a stabilizer of the SIJ. An MET of the hamstrings are often used to posteriorly rotate the innominates, thereby reducing the counternutation of the sacrum

Downslips: are generally the result of a traction injury such as a rider falling off a horse with the foot caught in the stirrups. I consider these injuries to be exceedingly rare. In theory these are accompanied by sacral nutation (posterior rotation of the innominate) and tension on the sacrotuberal, sacrospinal and interosseous ligaments.

Anterior rotation of the innominate

Anterior rotation of the innominate may the the result of an injury. However, activation of the iliacus which is an important hip stabiliser will also anteriorly rotate the ilium. Therefore, it may be equally important to have the counterbalancing stabilising muscles such as the horizontal fibres of internal oblique and transverse abdominis acting to stabilising the anterior aspect of the SIJ through compression. This would be particularly important if there were also an 'outflare' present. Additionally, the contralateral external oblique may be important during intermittent and high loading. There may also be a role for Psoas Major in the prevention of excessive anterior ilial rotation?

Anterior rotation of the innominate may also occur as a result of adductor muscle tension shifting the head of the femur forward. As the iliacus attempts to stabilise the hip, it counternutates the SIJ resulting in sacral rotation/torsion to the opposite side and pelvic rotation to the ipsilateral side. This can result in compression of the SIJ on the opposite side and hence localised pain there. Therefore, always check OLS (one leg standing) for anterior hip positioning.

Sacral Torsion

Sacral torsion around the oblique axis

The piriformis originates on the anterior aspect of the sacral base and creates a posterior rotation relative to the ilium, whereas the iliacus rotates the ilium anteriorly relative to the sacrum. Either of these movements would create a wedging of the anteriorly wider sacrum against the ilium and would under normal conditions help stabilise the SIJ. However, excessive compression could result in loss of SIJ movement. Inbalance or weakness or inco-ordination in timing, could result in excessive movement.

Palpation in prone : the left sacral sulcus is anterior whereas the right sacral apex is posterior resulting in forward rotation

Shamberger (2002) described these as 'backward rotations' where the base rotates back instead of forwards. Whereas forward rotation accentuates a lumbar lordosis, backward rotations reduce it and may even create a segmental low lumbar kyphosis. In the Osteopathic literature, these presentations have been linked to seemingly unrelated problems such as headaches, disturbed function of the GIT (diarhoea alternating with constipation) and genitourinal problems (frequency, nocturia and a disturbance in menstrual function)

It should be noted that this type of lateral flexion (i.e. on 2 legs and instigated from the spine above) is very different to the type of lateral flexion which occurs during stance phase of walking (inverted pendulum) where the hip rotation dictates the pelvic - spinal mechanics, and where pendular arm swing dictates thoracic movement and hence lumbar mechanics as well.

People with sacral torsions may have increased force closure in one SIJ and reduced forced closure on the contralateral side. Furthermore, they may present with poor form closure on either side (more likely on the side of counternutation) resulting in pain and load transfer dysfunction.

Since pelvic tilt plays an integral role in the oblique torsions during weight bearing it would make sense that the anterior, posterior and medial fibres of the gluteus medius are activated to control the movement of the ilia on the hip.


Bilateral tightness of the piriformis may reduce sacral nutation, whereas asymmetrical piriformis action can axially rotate the sacrum resulting in excessive compression in the contralateral SIJ. Is there piriformis insufficiency due to outflare created by ischiococcygeus? Are they 'buttock clenchers'? Clinically, improving SIJ stability by inhibiting tonically active muscles and activating tonically inhibited muscles (eg multifidus, transverse abdominis) usually improves lateral hip rotator strength.

Check timing between the gluteus maximus and hamstrings (hamies should not be dominant). If the ilium is in anterior rotation it is very difficult for the gluteus maximus to contract.

Can the hip stabilise on lateral weight shift onto a stable ilium? If the ilium goes into anterior rotation (counternutation) then the acetablum may contact the superior-anterior surface of the head of femur resulting in anterior hip pain. Additionally, excessive uncontrolled lateral weight shift places greater strain on the hip lateral stabilisers such as ITB/Tfl possibly resulting in lateral hip pain such as trochanteric bursitis and tendonosis.

Do the opposite femoral nerve (neural dynamics), external rotators (sacral torsion or ilial outflare) and rectus femoris (anterior innominate rotation) create excessive pressure on the opposite SIJ?

If there is an ipsilateral anterior innominate rotation with jamming up of the SIJ concommitant with contralateral hip internal rotation tightness with some adverse neural dynamics of the femoral and sciatic nerves then METs of the hamstrings and external rotators may reposition the innominate and sacrum. In this position the lumbar and thoracic spines can also be palpated. Thoracic rib tightness may be an indication of sympathetic nervous system hypervigilence/dysfunction which may lead increased mechanosensitivity in the muscles innervated by these regions. It is important to do one step at a time before arriving in this position.

Is the sacrum in too little nutation due to lack of multifidus activation? Reflexogenic inhibition and atrophy due to pain or is there excessive muscle spasm?

is there a leg length discrepancy or pubic symphysis instability?

  • due to poor hip/pelvic/trunk control?
  • due to poor biomechanics of the foot?
  • due to poor knee dynamics?


Osteitis Pubis may present as groin pain. Inflammation of the the bone leads to softening of the bone and cartilage leading to considerable disability. The time frame for recovery is anywhere from 5 months to 2 years. Aetiology is generally from excessive adductor action in activities such as kicking, sitting too high in the saddle of a bike and/or a poor saddle, forced abduction such as skiing, poor inner core stability (transverse abdominis and horizontal fibres of internal oblique) and poor outer sling co-ordination around the pelvis and lumbar spine. However, don't ignore lower limb mechanics such as excessive pronation of one foot and supination of the other. Imbalances between the adductors and the contralateral gluteus medius and the internal and external obliques can play a significant role in poor recovery and may have been part of the aetiology. Inferolateral abdominal wall hernias or weaknesses may have also be the cause of osteitis pubis.

Upslips and Downslips of the ilium are also possible, which maybe accompanied by symphysis pubis shearing (osteitis pubis). Counternutation of the ilium may be accompanied by an upslip or mistaken for an upslip. What is the mechanism of injury? Check quadratus lumborum, external oblique, adductor longus and latissimus dorsi-thoracolumbar fascia for length, strength and 'timing'.

Check stability in Stork test and modified Trendelenburg's test

Palpate conjoint tendon, pubic symphysis and the SIJ

Do the squeeze test at 30, 45 and 60degrees of knee flexion in supine crook lying. Add some rectus abdominus (stomach crunch) to see if it isn't a conjoined rectus abdominus tendonopathy as well.

Do active SLR and check symphysis pubis, then reassess with anterior or posterior ilia compression to ascertain the affect of improved force closure. Reduced pain or easier elevation with anterior compression may be indicative of the need to train the transverse abdominis and horizontal fibres of internal oblique (inner core). Conversely, improvements with posterior compression may be indicative of the need to train the deep multifidus which aids sacral nutation and/or train the muscles and fascia of the posterior outer sling.

  • in clients with excessive force closure this can be -ve
  • in clients with reduced force closure this can be +ve
  • are they getting medial knee pain due to adductor dysfunction?

Do active straight leg raise (ASLR) with or without anterior or posterior compression of the ilia to ascertain 'force closure'. Combinations of anterior and posterior compression on opposite sides is also extremely useful where a sacral torsion is involved. Improvements with anterior compression may mean the need for transverse abdominus training. Worsening with anterior compression may mean excessive transverse abdominus contraction. Improvements with posterior compression may indicate the need for deep Multifidus muscle training. Combinations of anterior and posterior compression resulting in improvements may indicate the need for combined deep MF and Transverse Abdominus training.

The effects of manual pelvic compression on trunk motor control during an active straight leg raise in chronic pelvic girdle pain subjects.

Beales DJ, O'Sullivan PB, Briffa NK. Man Ther. 2010 Apr;15(2):190-9. Epub 2009 Nov 28.


A sub-group of pelvic girdle pain (PGP) patients with a positive active straight leg raise (ASLR) responds positively to the application of external pelvic compression during the test. This study investigated the effect of this phenomenon on electromyographic (EMG) activity of the trunk muscles and intra-abdominal and intra-thoracic pressures in subjects with a unilateral sacroiliac joint (SIJ) pain disorder (n=12). All subjects reported reduced difficulty ratings during an ASLR with pelvic compression (paired t-test: p<0.001), yet no statistically significant changes in the muscle activation or pressure variables were found. However, visual inspection of the data revealed two divergent motor control strategies with the addition of compression. Seven subjects displayed characteristics of a decreased EMG profile, while in the other five subjects the EMG profile appeared to increase. As such this study provides preliminary evidence of two disparate patterns of motor control in response to the addition of pelvic compression to an ASLR. The findings may reflect different mechanisms, not only in the response to pelvic compression, but also of the underlying PGP disorder.

Additionally, pressure through the thorax and/or leveation/depression/transverse gliding of specific rib rings can be quite useful to ascertain the influence of rib malalignment and minor instability on ALSR. This again gives immediate diagnostic relevance as well as giving immediate awareness to the client of the existence of a problem.



Compressor Belts for the pelvis may also be useful for some people, however they should only be seen as a means to an end i.e. allow the possibility to function..

The use of pressure through the thorax and ilia can be also be used whilst assessing the clients specific relevant movement problem.

Altered motor control strategies in subjects with sacroiliac joint pain during the active straight-leg-raise test.

O'Sullivan PB, Beales DJ, Beetham JA, Cripps J, Graf F, Lin IB, Tucker B, Avery A., Spine (Phila Pa 1976). 2002 Jan 1;27(1):E1-8.


STUDY DESIGN: An experimental study of respiratory function and kinematics of the diaphragm and pelvic floor in subjects with a clinical diagnosis of sacroiliac joint pain and in a comparable pain-free subject group was conducted.

OBJECTIVE: To gain insight into the motor control strategies of subjects with sacroiliac joint pain and the resultant effect on breathing pattern.

SUMMARY OF BACKGROUND DATA: The active straight-leg-raise test has been proposed as a clinical test for the assessment of load transfer through the pelvis. Clinical observations show that patients with sacroiliac joint pain have suboptimal motor control strategies and alterations in respiratory function when performing low-load tasks such as an active straight leg raise.

METHODS: In this study, 13 participants with a clinical diagnosis of sacroiliac joint pain and 13 matched control subjects in the supine resting position were tested with the active straight leg raise and the active straight leg raise with manual compression through the ilia. Respiratory patterns were recorded using spirometry, and minute ventilation was calculated. Diaphragmatic excursion and pelvic floor descent were measured using ultrasonography.

RESULTS: The participants with sacroiliac joint pain exhibited increased minute ventilation, decreased diaphragmatic excursion, and increased pelvic floor descent, as compared with pain-free subjects. Considerable variation was observed in respiratory patterns. Enhancement of pelvis stability via manual compression through the ilia reversed these differences.

CONCLUSIONS: The study findings formally identified altered motor control strategies and alterations of respiratory function in subjects with sacroiliac joint pain. The changes observed appear to represent a compensatory strategy of the neuromuscular system to enhance force closure of the pelvis where stability has been compromised by injury.

Motor control patterns during an active straight leg raise in chronic pelvic girdle pain subjects.

Beales DJ, O'Sullivan PB, Briffa NK. Spine (Phila Pa 1976). 2009 Apr 20;34(9):861-70.


STUDY DESIGN: Repeated measures.

OBJECTIVE: To investigate motor control (MC) patterns in chronic pelvic girdle pain (PGP) subjects during an active straight leg raise (ASLR).

SUMMARY OF BACKGROUND DATA: The ASLR is a test used to assess load transference through the pelvis. Altered MC patterns have been reported in subjects with chronic PGP during this test. These patterns may impede efficient load transfer, while having the potential to impinge on respiratory function and/or to adversely affect the control of continence.

METHODS: Twelve female subjects with chronic PGP were examined. Electromyography of the anterior abdominal wall, right chest wall and the scalene, intraabdominal pressure, intrathoracic pressure, respiratory rate, pelvic floor kinematics, and downward leg pressure of the nonlifted leg were compared between an ASLR lifting the leg on the affected side of the body versus the nonaffected side.

RESULTS: Performing an ASLR lifting the leg on the affected side of the body resulted in a predominant MC pattern of bracing through the abdominal wall and the chest wall. This was associated with increased baseline shift in intraabdominal pressure and depression of the pelvic floor when compared with an ASLR lifting the leg on the nonaffected side.

CONCLUSION: This MC pattern, identified during an ASLR on the affected side of the body, has the potential to be a primary mechanism driving ongoing pain and disability in chronic PGP subjects.

The effect of increased physical load during an active straight leg raise in pain free subjects.

Beales DJ, O'Sullivan PB, Briffa NK. J Electromyogr Kinesiol. 2010 Aug;20(4):710-8. Epub 2010 Jan 20.


PURPOSE: It has been proposed that pelvic girdle pain (PGP) subjects adopt a high load motor control strategy during the low load task of the active straight leg raise (ASLR). This study investigated this premise by observing the motor control patterns adopted by pain free subjects during a loaded ASLR (ASLR+PL).

METHOD: Trunk muscle activation, intra-abdominal pressure, intra-thoracic pressure, pelvic floor motion, downward pressure of the non-lifted leg and respiratory rate were compared between resting supine, ASLR and ASLR+PL. Additionally, side-to-side comparisons were performed for ASLR+PL.

RESULTS: Incremental increases in muscle activation were observed from resting supine to ASLR to ASLR+PL. During the ASLR+PL there was a simultaneous increase in intra-abdominal pressure with a decrease in intra-thoracic pressure, while respiratory fluctuation of these variables were maintained. The ASLR+PL also resulted in increased pelvic floor descent and greater downward pressure of the non-lifted leg. Trunk muscle activation was comparable between sides during ASLR+PL in all muscles except lower obliquus internus abdominis, which was more active on the leg lift side.

CONCLUSION: Pain free subjects respond to an ASLR+PL by a general increase in anterior trunk muscle activation, but preserve the pattern of greater activation on the side of the leg lift observed during an unloaded ASLR. This contrasts to findings in PGP subjects who, despite having a high load strategy for performing an ASLR on the symptomatic side of the body, display equal bilateral activation of the anterior abdominal wall during the ASLR. This differentiates PGP subjects from pain free subjects, supporting the notion that PGP subjects have aberrant motor control patterns during an ASLR.

Changes in pelvic floor and diaphragm kinematics and respiratory patterns in subjects with sacroiliac joint pain following a motor learning intervention: a case series.

O'Sullivan PB, Beales DJ. Man Ther. 2007 Aug;12(3):209-18. Epub 2006 Aug 17.


This study was a case series design. The objectives of the study were to investigate the ability of a motor learning intervention to change aberrant pelvic floor and diaphragm kinematics and respiratory patterns observed in subjects with sacroiliac joint pain (SIJP) during the active straight leg raise (ASLR) test. The ASLR test is a valid and reliable tool to assist in the assessment of load transference through the pelvis. Irregular respiratory patterns, decreased diaphragmatic excursion and descent of the pelvic floor have been reported in subjects with SIJP during this test. To date the ability to alter these patterns has not been determined. Respiratory patterns, kinematics of the diaphragm and pelvic floor during the ASLR test and the ability to consciously elevate the pelvic floor in conjunction with changes in pain and disability levels were assessed in nine subjects with a clinical diagnosis of SIJP. Each subject then undertook an individualized motor learning intervention. The initial variables were then reassessed. Results showed that abnormal kinematics of the diaphragm and pelvic floor during the ASLR improved following intervention. Respiratory patterns were also influenced in a positive manner. An inability to consciously elevate the pelvic floor pre-treatment was reversed. These changes were associated with improvement in pain and disability scores. This study provides preliminary evidence that aberrant motor control strategies in subjects with SIJP during the ASLR can be enhanced with a motor learning intervention. Positive changes in motor control were associated with improvements in pain and disability. Randomized controlled research is required to validate these results.


The aim is the correction of pelvic mal-alignment & asymmetry - both static and dynamic

note the very poor trunk posture on hamstring stretching and the anterior pelvic tilting on quads stretching!!! - he will never make the hurdling team

What is the influence of the global stabilisers? In particular, external oblique and latissimus dorsi. As well as external oblique and adductor longus. Remember that the gluteal maximus works synergistically with the contralateral latissimus dorsi/erector spinae/thoracolumbar fascia during gait.

Altered breathing patterns during lumbopelvic motor control tests in chronic low back pain: a case–control study
Nathalie Roussel, Jo Nijs, Steven Truijen, Liesbet Vervecken, Sarah Mottram, and Gaëtane Stassijns

The objective of the study was to evaluate the breathing pattern in patients with chronic non-specific low back pain (LBP) and in healthy subjects, both at rest and during motor control tests. Ten healthy subjects and ten patients with chronic LBP participated at this case–control study. The breathing pattern was evaluated at rest (standing and supine position during both relaxed breathing and deep breathing) and while performing clinical motor control tests, i.e. bent knee fall out and active straight leg raise. A blinded observer analyzed the breathing pattern of the participants using visual inspection and manual palpation. Costo-diaphragmatic breathing was considered as optimal breathing pattern. Subjects filled in visual analog scales for the assessment of pain intensity during the tests. At rest, no significant differences were found between the breathing pattern of patients and healthy subjects (P > 0.05). In contrast, significantly more altered breathing patterns were observed in chronic LBP-patients during motor control tests (P = 0.01). Changes in breathing pattern during motor control tests were not related to pain severity (P > 0.01), but were related to motor control dysfunction (P = 0.01).

Is the thoracic spine mobile enough to allow localised movements without placing excessive movement on the lumbar spine? Additionally, lack of lateral chest expansion will affect the role of the diaphragm in respiration and stabilisation. Suggestions have been made that people who hyperventilate create respiratory alkalosis which results in metabolic acidosis and therefore creates excessive tension in the soft tissue through the sympathetic innervation of the blood vessels. Finally, lack of low thoracic spine mobility may affect the nutrition to the nerves innervating the muscles and blood vessels of the abdominal and pelvic region. Therefore, it is imperative to assess the mobility of the thoracic spine. Additionally, check the patency of the femoral artery in the groin region. A discrepancy in pulse rate and pressure may suggest that the iliopsoas is restricting blood flow. An MET of the iliopsoas can confirm or negate this hypothesis. Adhesion formations may be another reason. Moreover, reduced lateral diaphragmatic movements and reduced inferior thoracic spine mobility may be affecting sympathetic nervous system blood vessel tone and hence the patency of the pulse. It could be envisaged that reduced blood flow would affect the deep endurance stabilising muscles of the leg.

These exercises are designed for people with an anterior pelvic tilt or Posterior Pelvis (PPXS). They should be proceeded by low threshold diaphragmatic and pelvic floor exercises which enhance low loading IAP (intra abdominal pressure). Generally, people with PPXS are 'floppy' or of low muscle tone and need to be 'energised'.

What happens to the vertebrae and paraspinal muscles when lifting the leg or arm or both? There should NOT be an increase in erector spinae tension in the thoracolumbar regions nor should there be an inhibition of diaphragmatic movement.


People with APXS tend to be of high muscle tone. It is important to assess their anterior abdominal wall for excessive tightness and reduce this for optimal diaphragmatic expansion.

Both in APXS and PPXS the thoracic biomechanics and myo-mechanics needs to be assesed and treated.

What about 'the needle' exercise from yoga which may be used to assess thoracic spine rotation


These high threshold loading exercises should only be done when control over the diaphragm and pelvic floor is achieved in low threshold scenarios. They do not replace those abilities. Low threshold function needs to be continually emhasised even after achieving a stage where high threshold loading exercises are required. The second exercise above should be done in sitting either in a chair or on a Swiss Ball. If using a Swiss Ball the person can move it gently from side to side whilst maintaning the isometric contraction. The third exercise above should only be undertaken once lateral weight shifting and OLS (one leg standing) control are optimal. The aim is to combine the internal corset stability (tr abdo, hori fibres int oblique, diaphragm and pelvic floor) with the external slings. The Gluteus Medius should function optimally over and above ITB - TFL strain and tension. In fact assessing the internal corset 'guy wires' and their ability to improve sings synergies can be tested in side lying and using 'the clam' exercise', in supine using ASLR and in prone using ALE

Connell AT (2008) Concepts for assessment and treatment of anterior knee pain related to altered spinal and pelvic biomechnics: a case report. Manual Therapy, 13, 560-563. This author used 3 sessions of treatment to the T10/11, T11/12, T12/L1 and L5/S1 to improve the ROM and ability to squat in a patient with anterior knee pain.

Grindstaff TL et al (2009) Effects of lumbopelvic joint manipulation on quadriceps activation and strength in healthy individuals. Manual Therapy, 14, 415-420. These investigators found a significant increase in the ability to produce quadriceps force (+3%) and activation (+5%) immediatley following lumbopelvic joint manipulation

When dealing with diaphragm dysfunction which is located in the regions T7-L3 and thoracolumbar dysfunction the innervation of these regions should be considered. Don't forget that the diaphragm is innervated by C3,4,5 whilst the latissimus dorsi is innervated by the low cervical spine, let alone the inferior trapezius which has an upper cervical spine innervation. Hence don't forget to asssess the cervical spine. Also occulomotor and postural reflexes may be important.

Summary of integrated Pelvis - Body dysfunction

Pelvic Floor

The pelvic floor can be considered as the base of the cylinder which incorporates the pelvis, abdominal muscles, back muscles, the thoracolumbar fascia and diaphragm. Frequently, people presenting with low back and pelvic pain also describe weakness of the bladder. Such weakness may involve the urethra and effective force closure around the pelvis. When a person coughs, the urethra usually contracts with the abdominal muscles thereby avoiding embarrassment. However, stess urinary incontinence occurs in 8.5 - 38% of women (Ashton-Miller et al 2001, Scan J Urology & Nephrology Supp 207). It affects 28% of elite female athletes (Bo & Borgen 2001, Med Sc Sp Ex, 33, 11, 1797), one out of ten males and 4 of every 10 females (Fantl et al 1996, Managing acute and chronic urinary incontinence, clinical practice guidlelines, no2, Rockville MD, US Dep't Health & Human Services). Cyclists can also have pelvic floor dysfunction and neuropathies as a result of direct presure on the pudendal nerves with an incorrect saddle or saddle position. Urinary continence relies on the support of the sphincter closure system and the urethral support system. Essentially, the urethra sits inside a hammock of muscular and fascial and liagmentous support.

The over contraction of the pubococcygeus could result in sacral counternutation. It is likely that the muscles are balanced in such a fashion that optimisation of function occurs - 'not too much and not too little'

We routinely use transabdominal Real Time Ultrasound as an assessment and biofeedback tool for training the synergistic role of the pelvic floor and transverse abdominis muscles. In particular during Active SLR we examine whether there is pelvic floor descent and whether this changes with manual pelvic compression and whether these people can be trained to maintain or raise the pelvic floor during this manouvre. Importantly, lumbar posture and spine neutral may have a significant influence on results. Progression from supine to side lying and to standing with weight shifting are also carried out using R-T US. Coccygodynia can be the result of excessive pubococcygeus activity.

Lee D, Lee L-J (2004) Stress Urinary Incontinence - a consequence of failed load transfer through the pelvis? 5th World Interdisciplinary Congress on Low Back and Pelvic Pain, Melbourne, November 2004

Smith et al (2006) Disorders of breathing and continence have a stronger association with back pain than obesity and physical activity. AJP, 52, 11-16

Sapsford RR et al (2000) Co-activation of the abdominal and pelvic floor muscles during voluntary exercises. Neurourology and Urodynamics, 20, 1, 31-42

Kelly M et al (2007) Healthy adults can more easily elevate the pelvic floor in standing than in crook-lying: an experimental study. AJP, 53, 187-191

Rahmani N & Mohseni-Bandpei MA (2009). Application of perineometer in the assessment of pelvic floor muscle strength and endurance: a reliability study. Journal of Bodywork and Movement Therapies.

Stuge B et al (2006) To treat or not to treat postpartum pelvic girdle pain with stabilizing exercises? Manual Therapy, 11, 337-344.

These latter investigators concluded that effective treatment of postpartum pelvic girdle pain may be achieved when exercises for the entire spinal musculature are included, individually guided and adpated to each individual.

Hip - retroversion of the acetabulum

Reynolds, Lucas, Klaue (1999). Retroversion of the acetabulum - a cause of hip pain. JBJS, 81B, 2, 281-8

Retroversion of the acetabulum can lead to increased ROM of internal rotation with a conommittant loss of external rotation which in turn affects pelvic rotation during activitis such as ambulation.

Cam and Pincer Lesions can occur in association with labral lesions. Excessive tension in the external hip rotators can cause anterior acetabular impingement. Iliopsoas tendonosis may be associated with anterior labral lesions. Excessive anterior rotation of the innominate can cause anterior hip impingement.

Pfirrmann et al (Radiology, 240, 3, 2006 pp778-785) used MRI measurements of alpha angles and the depth of the acetabulum to determine the risk and incidence of CAM and Pincer lesions in the hip. They concluded that a deep acetabulum and posteroinferior acetabular cartilage lesions were a characteristic finding of pincer impingement.

Lateral hip pain should always be assessed in terms of internal corset versus external corset stability as outlined by Vleemings muscular 'slings' or neuromuscular vectors.

Muscle energy techniques (adaptation of PNF contract relax)

Muscle energy techniques as developed by British - Canadian physiotherapist, the late David Lamb, used the priciples of contract relax technqiues from PNF to restore pelvic-hip-lumbar spine functional symmetry. The contract relax technique uses the principle of autogenic muscle relaxation post isometric contraction. Theoretically, this is based on Ib tendonous, golgi tendon organ, autogenic inhibition or gate control theory, involving type III muscle afferents. In the PNF concept, this isometric contraction can be up to 100% max, whereas when using MET's the contraction level is usual low and may represent only 10%max when using it to make pelvic and back adjustments. Investigations, comparing static stretching, isometric contractions and contract-relax have demonstrated "a broader adaptive response that likely explains its (C-R) superior efficacy in acutely increasing ROM" (Kay et al 2015, Med Sc Sp Ex, 47, 10, 2181-2190). Clinically, hip flexor C-R are used to improve the ROM of both flexion and extension when used in the Gaelsens position (see previous). When used in side-lying an isometric contraction of the hip flexor which is on the lower side can be used to improve contralateral (upper side) rotation as well as reduce SIJ counternutation. The same position and contraction can be used whilst placing the fingers on the upper side Psoas Major (in the anterolateral abdominal cavity) whilst asking the client to use lateral diaphragmatic breathing to release the myofascia which envelops the hip flexor and diaphragm. Met's can also be performed on the piriformis whilst in Prone Knee Bend to reduce sacral torsion and ilial outflares. Ischiococcygeus releases use a similar principle of isometric contraction with finger pressure, whilst applying a medial pressure to the ASIS to reduce outflares. Whereas, the previous examples involve muscle contractions to improve the ROM in the direction opposite to the muscles normal functional pull, the hamstring is used to improve ilial counter-nutation in the same direction as it's pull. This technique is done in side-lying, where a pressure is applied by the therapist to the lower part of the clients posterior thigh, whilst the client pushes their leg into the therapists hand, the therapists other hand is applying a pressure on the sacral tuberosity in a manner which opposes counter-nutation. Having performed these techniques since the late 1980's I can attest to their clinical efficacy, especially when they are combined with manual therapy joint mobilisations, myofascial releases, dry needling and an appropriate exercise regime.

Trigger Points and Fascia

Recent publications into trigger point therapy include

  • Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Shah JP et al (2008) Arch Phys Med Rehabil, 89, 16 -23.
  • Integrated Dry Needling with new concepts of myofascial pain, muscle physiology and sensitization. Shah JP In : Contemporary Pain Medicine, Integrative Pain Medicine, The Science and Practice of Complementary nd Alternative Medicine in Pain Management. Ed Audette & Bailey, Human Press, Totowa, NJ
  • An explanation of Simons' integrated hypothesis of trigger point formation. Gerwin RD, Doomerholt J, Shah JP (2004). Current Pain and Headache reports, 8, 468-475
  • Uncovering the biochemical milieu of myofascial trigger points using in vivo microdialysis: an application of muscle pain concepts to myofascial pain syndrome. Shah JA & Gilliams EA (2008). J of Bodywork and Movement Therapies, 12, 371-384
  • An in-vivo microanalytial technique for measuring the local biochemical milieu of human skeletal muscle. Shah JP et al (2005) J Appl Physiol, 99, 1977-1984

Comparison of normal, latent and active trigger point physiology using microdialysis in the upper trapezius muscle (Shah et al 2005). These researchers also found similar results for Bradykinin, Calcitonin Gene Related Peptide (CGRP), Substance P, Tumor Necrosis Factor alpha, and Interleukin 1beta. Additionally, reduced pH levels were also seen in areas of active trigger points.

Trigger points have been classically associated with plyometric type of exercise where muscles lengthen during eccentric contraction which although it damages cytoskeletal is considered adaptive in the formation of new sarcomeres. Investigations into eccentric exercise revealed pain 8 hours after initial exercise which was maximal 48 hours later (Newham, Mills, Q uigley, Edwards 1983). These investigators found low frequency fatigue 10 minutes after a 20 minute period of stepping (Newham et al 1983). Additionally, they demonstrated progressive increases in IEMG during the exercise in the rectus femoris (160% increase) and vastus medialis (140% increase) in the eccentric contracting leg (Newham et al 1983). Mechanical damage to the sarcoplasmic reticulum resulting in less calcium release for each excitatory action potential was suggested as the cause of the low frequency fatigue (Newham et al 1983).

However, a number of sites in the myofibrillar complex such as reduce binding sensitivity and capacity of Troponin C for calcium, altered troponin-tropomysosin interaction to impaired binding and force generation by actin and myosin have been implicated in impaired force generation (Green 1990). Indeed, in the absence of any association between relaxation rates and Calcium kinetics raises support for the notion of a rate-limiting process controlling the relaxation of fatigued muscles being located in the contractile proteins (Hill et al 2001). During fatigue the relaxation times can be prolonged as much as 50% (Bigland-Ritchie et al 1986) thus resulting in increased force generation during submaximal stimulation due to tetanic fusion despite a substantial fall in the maximum tetanic force (Bigland-Ritchie et al 1986).

The initial overall loss of force production seen may be due to Desmin and Titan damage (Lieber & Friden 2002). Desmin acts as an extra-sarcomeric mechanical stabilizer between adjacent Z discs and the attachment to the costomere at the sarcolemma (Lieber, Shah & Fridén 2002). The costomere complex contains Talin, Vinculin & Dystrophin which attach to the trans-sarcolemmal proteins Integrin and Dystrophin associated proteins. These proteins allow the lateral transmission of force from actin to the basal lamina containing type IV collagen which is contiguous with the endomysium (Kovanen 2002). Desmin loss after eccentric exercise can occur within 5 minutes, possibly as a result of increased intracellular Calcium leading to Calpain activation and selective hydrolysis of intermediate filament network (Lieber & Fridén 2002). This may result in the ‘popping of sarcomeres' of different length thereby potentially loosing their myofilament overlap of actin and myosin (Lieber & Fridén 2002). Hence, reduced force production would be expected. Additionally, the release of matrix metalloproteinase (MMP) which may degrade the extramyocellular type IV collagen (Korskinen, Kovanen, Komulainen et al 1996). However, this effect occurs many days after exercise (Korskinen et al 1996) and could even effect torque production 28 days after exercise (Lieber & Fridén 2002). This has significant implications in exercise training prescription.


flash file created by Martin Krause 2003

Titan molecules span the gap between the ends of the thick filaments and Z-bands. At the 2007 MPA conference in Cairns, Rob Herbert, provided the AJP oration whereby he explained the significance of Titan as a major determinant of extensibility in muscle fibres. Additionally, he stated that Titan is differentially expressed in human skeletal muscle as short stiff fibres and long compliant fibres

  • Costomeres are 15 different proteins
  • Low oxidative muscles have a tendency to tear during eccentric exercise
  • Loss of desmin proceeds loss of fibronectin membrane
  • Fibre strain results in increased intracellular and extracellular calcium which ?may lead to desmin hydrolysis through calpaine?
  • Sarcomere shortening occurs to the detriment of tendon lengthening
  • Excitation-contractile coupling may be the area disrupted rather than pure sarcomere disruption
  • Structural changes of the disruption of the cytoskeleton include dystrophin (sublaminal membrane protein), sometimes desmin and titin, whereas alpha actin is always OK ?suggesting that calpaine is not the enzyme responsible for protein dysruption?
  • Creatine Kinase has no correlation with these cytoskeletal changes
  • Inflammatory process important for tissue cleaning and remodelling
  • Mechanism for muscle adaptation may be myosin gene regulation - heavy chain myosin isoform upregulation
  • Oxygen into the Mitochondria and through the electron transfer chain (ETC) results in ATP use of 20% for power and 80% for heat, therefore people producing less heat may be producing more power?
  • Slow twitch muscle fibre concentration varies with the years of training
  • Cycling cadence velocity at peak efficiency for slow twitch muscle fibres is 80rpm

Trigger Point palpation

Trigger point - gluteus medius

Trigger Points : piriformis, gluteus maximus, quadratus lumborum, levator ani

Trigger Point - adductor magnus. Note the anal referral which is common amongst cyclists who use the adductors to power hip extension

Trigger Points : Obtrator Internus and pelvic floor

Trigger point - iliopsoas

Fibroblasts and Loose Connective Tissue

At the APA conference in Sydney during October 2009, Dr Helene Longevin presented her research into the effects of stretching subcutaneous tissue. Superficial and deep fascia are composed of loose and dense connective tissue layers. The loose layers allow dense layers to glide past one another. This tissue contains abundant fibroblasts, immune cells and neurovascular bundles. A 20% static stretch of loose connective tissue for 30minutes significantly increases the size of fibroblasts in vivo and in vitro. Although this mechanism remains unclear it is hypothesised to be due to microtubule reorganisation (Beta-tubulin). Inhibition of growth kinase and Roc prevents the cells from spreading out. Actine polymerisation occurs at the leading edge. Fibro-attraction occurs whereby fibroblasts push forward at it's front edge, whilst retracting the rear (through Rho). Both Rac and Rho are activated simultaneously. The fibroblasts microtubule assembly contributes to connective tissue (C.T) relaxation, which means that tense in connective tissue is actively regulated. Viscoelastic response of loose connective tissue is influenced by specific cytoskeletal inhibitors. Rac increases the equilibrium force. Active C.T tensioin regulation may occur normally in response to sustained chnages in tissue length (e.g. hift in body position). This role may be to prevent sustained mechanical stimulation of other cells within the C.T (immune cells, nerve fibres, blood vessels).

The dense C.T fibroblasts don't respond to stretch due to the stiff matrix preventing the fibroblasts from receiving any strain. Scarring due to injury causes an increase in dense C.T which can be pevented by 10minutes, 2 times per day for 1 week in a suspended tail animal model. The combination of reduced movement and inflammation is a recipe for fibrosis. R-T US can be used as feedback during dry needling to observe C.T movement. In people suffering low back pain the fascial layers are less fluid and less differentiated. Additionally, people with LBP have hicker perivascular C.T. Involuntary muscle spasms may decrease the relative C.T motion during passive movement. Conversely, increased C.T thickness, stiffness and/or viscosity may affect the passive stiffness and range of movement of adjacent muscles.

Intrinsic tension within C.T will have profound effects in the cells within it such as blood vessel precursors stimulating angiogenesis. Similarly, immune cells may be affected by this tension. High amplitude or repetitive tissue stretch may cause injury but can also increase C.T strength. Low amplitude stretch within or slightly beyond the usual ROM may help maintain appropriate mibility and dynamic tissue response. Hence this may represent strong eveidence for STM, dry needling, joint mobilisations, muscle energy technqiues, strain-counterstrain techniques and training with Whole Body Vibration.

Exercise and Growth Hormone

Bed rest can have deleterious effects on muscle function. Researchers have recently described a direct muscle afferent-pituitary axis whereby bio-assayable growth hormone (BGH) regulation is tightly coupled with muscle function rather than muscle fibre type. Unlike, exercise-induced increases in plasma immuno-assayable growth hormone (IGH), whose concentration peak occurs during or after longer duration aerobic or resistance exercise involving larger muscle mass, BGH is released after a brief series of isometric contraction (McCall et al 2001). The BGH response is absent , despite the maintenance of normal torque output and pre-exercise plasma BGH and IGH, when leg musculature is chronically unloaded, as after 2 days bed rest or space flight. They hypothesised that this was due to chronic alterations in proprioceptive inputs (McCall et al 2001). These responses normalised within approximately 8 days of ambulatory recovery. Furthermore, they suggested that BGH stimulates bone growth and that low threshold fibre activation through electrical stimulation, exercise and /or vibration may ameliorate the effects of chronic unloading (McCall et al 2001). Moreover, this is direct evidence for the existence of a muscle-pituitary functional pathway in the absence of inflammation. It also highlights the need not to underestimate the effects of bed rest when recommencing a training regime after a period of illness or trauma. Furthermore, it would appear that low threshold isometric contractions, as occur during the application of muscle energy techniques, may stimulate this growth hormone.


Good exercise prescription (of power and endurance) considers whether the person is functionally unstable due to weakness, stiffness, atrophy or hypermobility


The force (and hence Power = Force x velocity) produced by a muscle is directly proportional to it's cross sectional area (as well as it's length when considering power). Therefore, the presence of atrophy : hypertrophy across the dynamic stabilising spectrum of Newton's third law of action-reaction needs to be assessed and calculated into the clinical reasoning process when considering left-right, anterior-posterior dysfunction. Optimal torque becomes paramount as the linear forces create rotatory inertia and momentum (see cycling kinematics for torque dynamics).What about plyometrics and energy absorption through eccentric-concentric muscle action? When joints are accelerating, inverse dynamics dictates that the 'two joint muscles' act as energy straps transducing forces from one body segment to the next. Therefore, it is important to ascertain whether the muscles are short and weak. If this is the case, then excessive stretching may result in inappropriate force transduction leading to injury in the more mobile areas. Apart from predisposing to injury, this uncontrolled energy reduces the efficiency or economy of movement which normally can be captured with the release of the potential energy during elastic recoil (for more details refer to endurance training for running )

Check out the 'tensegrity model' as it applies to biomechanical integrety

ball exercises

Clinical example of sacroiliac pain

Further Reading

Bermark (1989) Stability of the lumbar spine: a study in mechanical engineering. Acta Orthopaedica Scandinavica, 230, 60, 20-24

Boyling & Jull (2004) Grieves Modern Manual Therapy, The Vertebral Column, Churchill Livingston

Chaitow L (2001) Muscle Energy Techniques. Edinburgh

Chiarelli PE (1998) Womens waterworks ; curing incontinence. Gore & Osment Publications Rushcutters Bay

Cholewicki & Silfies (2004) Clinical biomechanics of the lumbar spine. In : Boyling & Jull (2004) Grieves Modern Manual Therapy, The Vertebral Column, Churchill Livingston, ch7

Christensen et al (2004) Clinical reasoning in the diagnosis and management of spinal pain. In : Boyling & Jull (2004) Grieves Modern Manual Therapy, The Vertebral Column, Churchill Livingston, ch27

Elvey & O'Sullivan (2004) A contemporary approach to manual therapy. In Boyling & Jull (2004) Grieves Modern Manual Therapy, The Vertebral Column, Churchill Livingston. Ch33

Gibbons & Tehen (2000) Manipulation of the spine, thorax and pelvis. An osteopathic perspective. Churchill Livingstone, Edinburgh

Hides et al (1994) Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine, 19, 2, 165-177

Hides et al (1995) Multifidus recovery is not automatic following resolution of acute first episode low back pain. Spine, 21, 23, 2763-2769

Hodges (1997) Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Research, 114, 362-370

Hodges & Richardson (1997) Contraction of the abdominal muscles associated with movement of the lower limb. Physical Therapy, 77, 132-144

Hodges & Gandevia (2000) Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J Appl Physiol, 89, 967-976

Hodges et al (2002) Feedforward activity of the pelvic floor muscles precede rapid upper limb movements. Australian Physiotherapy Association conference, Sydney, abstract 21

Holstege et al (1996) The emotional motor system. Elsevier, Amsterdam

Kelly M et al (2007) Healthy adults can more easily elevate the pelvic floor in standing than in crook-lying: an experimental study. AJP, 53, 187-191

Lee D, Lee L-J (2004) Stress Urinary Incontinence - a consequence of failed load transfer through the pelvis? 5th World Interdisciplinary Congress on Low Back and Pelvic Pain, Melbourne, November 2004

Lee D (2004) The Pelvic Girdle: an approach to the examination and treatment of the lumbopelvic-hip region. Churchill Livingstone, Edinburgh

Mercer (2004) Kinematics of the spine In : Boyling & Jull (2004) Grieves Modern Manual Therapy, The Vertebral Column, Churchill Livingston, ch4

O'Sullivan (2004) 'Clinical instability' of the lumbar spine: its pathological basis, diagnosis and conservative management. In : Boyling & Jull (2004) Grieves Modern Manual Therapy, The Vertebral Column, Churchill Livingston Ch 22

O'Sullivan et al (2002) Altered motor control in subjects with sacro-iliac joint pain during active straight leg raise test. Spine 27, 1, E1-E8

O'Sullivan et al (2002) The effect of different standing and sitting postures on trunk muscle activity in a pain free population. Spine, 27, 1238-1244

O'Sullivan et al (2003) Lumbar repositioning deficit in a specific low back pain population. Spine, 28, 10, 1074-1079

Panjabi (1992) The stabilizing system of the spine. 1: Function, dysfunction, adaptation, and enhancement. J of Spinal Disorders, 5, 4, 383-389

Potter & Rothstein. Physical Therapy,1985, 65, 11, 1671-5

Rahmani N & Mohseni-Bandpei MA (2009). Application of perineometer in the assessment of pelvic floor muscle strength and endurance: a reliability study. Journal of Bodywork and Movement Therapies.

Richardson et al (2002) The relationship between the transversely oriented abdominal muscles, sacroiliac joint mechanics, and low back pain. Spine, 27, 4, 399-405

Sapsford (2001) The pelvic floor: a clinical model for function and rehabilitation. Physiotherapy, 87, 620-630

Sapsford et al (2001) Co-activation of the abdominal and pelvic floor during voluntary exercises. Neurology and Urodynamics, 20, 31-42

Sapsford & Hodges (2001) Contraction of the pelvic floor muscles during abdominal manouvers. Archives of Physical Medicine and Rehabilitation, 82, 1081-1088

Sapsford & Kelley (2004) Pelvic Floor Dysfunction in low back and sacroiliac dysfunction. In: Boyling & Jull (2004) Grieves Modern Manual Therapy, The Vertebral Column, Churchill Livingston, ch35

Schamberger W (2002) The malalignment syndrome ; implication for medicine and sport. Churchill Livingstone, Edinburgh

Shumway-Cook & Woollacott (1995) Motor control: theory and practical applications. Williams and Wilkins, Baltimore

Smith et al (2006) Disorders of breathing and continence have a stronger association with back pain than obesity and physical activity. AJP, 52, 11-16

Snijders et al (1993) Transfer of lumbosacral load to iliac bones and legs. 1. Biomechanics of self bracing of the sacroiliac joints and its significance for treatment and exercise. Clinical Biomechnics, 8, 285-294

Snijders et al (1993) Transfer of lumbosacral load to iliac bones and legs. 2. Loading of the sacroiliac joints when lifting in a stooped posture. Clinical Biomechanics, 8, 295-301

Stuge B et al (2006) To treat or not to treat postpartum pelvic girdle pain with stabilizing exercises? Manual Therapy, 11, 337-344.

Sturesson et al (2000). A radiostereometric analysis of movements of the sacroiliac joints during standing hip flexion test. Spine 25(3), 364-368

Van Wingerden et al (1993) A functional-anatomical approach to the spine-pelvis mechanism: interaction between the biceps femoris muscle and the sacrotuberous ligament. European Spine Journal, 2, 140-144

Vleeming et al (1989). The sacrotuberous ligament: a conceptual approach to its dynamic role in stabilizing the sacroiliac joint. Clinical Biomechanics, 4, 201-203

Vleeming et al (1989). Load application to the sacrotuberous ligament: influences on sacroiliac joint mechanics. Clinical Biomechanics, 4, 204-209

Vleeming et al (1990). Relation between form and function in the sacroiliac joint. 1. Clinical anatomical aspects. Spine, 15(2), 130-132

Vleeming et al (1990). Relation between form and function in the sacroiliac joint. 2. Biomechnical aspects. Spine, 15(2), 133-136

Vleeming et al (1992). Mobility in the SI-joint in old people: a kinematic and radiological study. Clinical Biomechanics, 7, 170-176

Vleeming et al (1995). The posterior layer of the thoracolumbar fascia: its function in load transfer from spine to legs. Spine, 20, 753-758

Vleeming et al (1996). The function of the long dorsal sacroiliac ligament: its implication for understanding low back pain. Spine, 21, 5, 556-562

For more references see also

Neuro immune reponses cognitive behavioral therapy

exercise sarcopenia immunology

motor learning

pain and inflammation

chronic low back pain

Clinical Application of MET's in a cyclist after a fall

Updated : 25/04/2018


BIB Physio Facebook News Feed.

Trending @ Back in B Physio

  • Sat 18 Nov 2017

    Beetroot Juice Increases Human Muscle Force

    Beetroot juice increases human muscle force Beetroot juice has been shown to improve low frequency muscle force independent of Calcium-handling-proteins or REDOX reaction (Whitefield et al 2017, Med Sc Sp Ex, 49, 10, 2016-2024). Further benefits of beetroot juice are thought to include reduction of blood pressure protection from pre-mature aging aiding cancer survival lowering serveral inflammatory markers including interleukin-6, C-reactive protein and tumor necrosis factor alpha stabilising blood suger improving sexual performance anti-arthritic effects blood purification and enhanced red blood cells removing 'bad' estrogens from our blood stream Uploaded : 18 November 2017 F Read More
  • Wed 01 Nov 2017

    YouTube videos

    Take a look at our YouTube channel Read More
  • Sun 15 Oct 2017

    Neuroplasticity in Tendon Dysfunction

    Neuroplasticity in Tendinopathy by Martin Krause A multitude of contributing factors to altered motor control must be addressed when treating tendon dysfunction. What we have failed to consider in the past when dealing with chronic or recurrent tendon issues are motor control problems encompassing corticospinal control of excitation and inhibition as well as belief systems about pain and contextual factors related to imaging.  Research by Ebonie Rio et al (2015) (BJSM Sept 25, 10.1136/bjsports-2015-095215) suggest that the pain state sets up an adaptive pathway whereby the ipsilateral kinetic chain is directly inhibited by reflexogenic pathways, as well as being inhibited by contralateral hemispheric activity. Simultaneously excitation is enhanced in the opposite limb as well as in least in the case of enhanced excitation of the hamstrings in quadricep tendinopathy. If this is true, then so much for training the contralateral limb for 'cross training' purposes! This may also explain why a lot of people seem to have "all their injuries on the same side" (of the body). Furthermore, they recommend enhancing corticospinal drive through the use of 30-60 second isometric holds at 70-80% MVC to load the muscle whilst using isokinetics to load the tendon. Moreover, they recommend the use of a metronome at 60bpm (stages 1 and 2) with a count of 3 up, 2 down for quads, and 2 up, 3 down for calf isokinetics to optimally engage corticospinal drive through the visual and auditory stimuli (also shown by Kohei et al 2012 for motor imagery and M1 stimulation) more Cortical mapping of infraspinatus muscle in chronic shoulder pain demonstrating higher motor thresholds (aMT= activation MT) and hence reduced excitability on the affected side (39 vs 35) (Ngomo et al 2015 Clinical Neurophysiol, 126, 2, 365-371) Cortical mapping of pain and fear. Lots of overlap suggesting that taking away the fear from the pain with clear clinical explanations and a focused goal directed program using specific functional outcomes is important.  Individuals with patellofemoral pain (PFP) had reduced map volumes and an anterior shift in the M1 representations, greater overlap of the M1 representation and a reduction in cortical peaks across all three quadriceps (RF, VL, VMO) muscles compared with controls.(Te et al 2017 Pain Medicine, pnx036,  Uploaded : 18 October 2017 Read More
  • Mon 09 Oct 2017


    Do I need a scan? "a picture tells a thousand words" - not really! by Martin Krause A scan, in it's self, will not improve anyone's condition. The purpose of a scan is to gain more information about the pathology. Sometimes this information may be irrelevant to the management of a patient's condition. For example, if you knocked your elbow on a door frame and suffered a bruise, which was already beginning to resolve, an ultrasound scan may show some minor soft tissue damage, but that was already obvious by the fact of the bruise, and the information gained from the scan has not helped nor changed the management of the bruise. Therefore, the main reason for getting a scan would be because there is concern that the presence of certain pathologies may lead to a change in the medical management. For example, sometimes a rolled ankle can be more than sprained ligaments, and may require surgey or immobilisation in a boot. If the therapists suspects this might be the case, then they will recommend or refer for a scan (probably an X-Ray) to check the integrity of the bones (especially the fibular and talar dome), because if there is no bony damage then the patient can be managed conservatively with taping, exercises, ultrasound, massage, joint mobilisations etc. However, if there is boney damage, for example, then it might be necessary for the ankle to be immobilised in a boot for three - six weeks, for example. This dramatically different medical management depends on the results of a scan, and it is therefore worth doing. However, scans have no predictive value to the presence or severity of pain. Thirty-three articles reporting imaging findings, in the low back, for 3110 asymptomatic individuals were investigated for pathology. The prevalence of disk degeneration in asymptomatic individuals increased from 37% of 20-year-old individuals to 96% of 80-year-old individuals. Disk bulge prevalence increased from 30% of those 20 years of age to 84% of those 80 years of age. Disk protrusion prevalence increased from 29% of those 20 years of age to 43% of those 80 years of age. The prevalence of annular fissure increased from 19% of those 20 years of age to 29% of those 80 years of age. (Brinjikji, W et al Spine Published November 27, 2014 as 10.3174/ajnr.A4173). Hence, the results of imaging need to be assessed within the context of the entire clinical picture. Frequently too much emphasis is placed on the imaging not only by the clinician but also by the patient. Some people react to pathology seen on scanning as an affirmation of their problem and can either use it to gain clarity and become better or conversely become worse. Moreover, some people find imaging with inconclusive results as a 'panic moment' - "no one knows what is wrong". Similarly, ultrasound imaging of the tendond has good predictive diagnostic and aids in clinical reasoning when it comes to full tears. However, with partial tears it is a totally different 'ball game'. Ultrasound is highly user dependent, with specifically trained musculoskeletal radiologists able to produce high-quality images that may provide more clinically relevant information than those produced by clinicians with less experience in imaging. Sean Docking, a leading tendon researcher at Monash University, cited 7 authors who found pathological tendon chnages in 59% of asymptomatic individuals, whereas he found that 52% of asymptomatic elite AFL sportsmen had tendon pathology on imaging! Furthermore, symptomatic individuals who improved clinically to the point of resuming play, weren't shown to have improvements on imaging. Again, the clinical context and the clinical reasoning can in many instances prove to be the 'gold standard' not the imaging itself, when considering management options. Shoulder supraspintatus tendon pathology, in the abscence of trauma, is known, in many instances, to be a disorder of immune-metabolic compromise of the tendon and bursa. Imaging may show some changes in signal intensity but, unless it's a complete tear, it can reveal neither the intensity nor the severity of pain when taken outside of the clinical context. A thorough physical and subjective examination integrating all the clinical dimensions of the problem will have far greater value than any one single imaging modality. Yet, imaging still should be used in instances of progressive rapid deterioration and suspected serious pathology which may require surgery and/or immediate medical intervention. In summary, sometimes it is worthwhile getting a scan, because the information gained from that scan will determined the type of medical management that is employed. However, at other times, the scan may be unneccessary, because the information may be irrelevant or lead to an incorrect change in medical management, due to over-reporting of 'false positives'. You will be able to make this decision on the advice of your health care professional. On occasions it can actually be detrimental to have a scan, because some patients can become overly obsessed with the medical terms used to describe their scan results, which then can become the major focus for the clinician and the patient, rather than the more prefereable focus on their symptoms and functional abilities. For example, many people have lumbar buldging discs yet have no symptoms, yet sometimes when these patients have an MRI or CT scan, they can develop symptoms because they think they should have pain if the scan says so! Conversely, for some people the results of imaging can have a positive and reassuring affect. Therefore, it is very important to assess a clients attitude to scans before prescibing them so that the patient's expectations are managed appropriately, and not burdened by the additional, sometimes confusing, information supplied by a scan. Uploaded : 10 October 2017 Read More
  • Thu 14 Sep 2017

    Cervical Spine implications in concussion

    Neck aetiology, autonomic and immune implications, exercise and diet in the musculoskeletal physiotherapy management of Post Concussion Syndrome (PCS) by Martin Krause, MAPA, Titled member Musculoskeletal Physiotherapy Association of Australia  A 14 year old boy presented to A&E, in August 2016, after receiving an impact to the head during AFL (Australian Rules Football). Although his SCAT3 scores were relatively mild, he went on to suffer severe lethergy, resulting in a lengthy abscence from school, culminating in a return to school for exams in the first week of December 2016. By December, even a 30 minute walk was extremely fatiguing. To place this into perspective, he had been playing elite academy grade AFL for several seasons and was an extremely fit outdoor adventurer. Confounding Variables : end of season injury and hence no follow up from the academy suffers from Hypermobile Joint Syndrome (HJS) and possibly Ehlers Danlos Syndrome (EDS), however Beighton score 4/9. suffers from food intolerances, particularly to Glutin and diary, but also some other foods. Potential IBS and autoimmune issues. had just gone through a growth spurt (190cm) Imaging : Brain MRI normal Medical Examination : Balance remained impaired to tandem walking and single leg stance. The vestibular occular motor scale showed significant accomodation deficit of 15cm and there was a mild exacerbation of symptoms. ImPACT testing revealed adequate scores and reaction time of 0.65 which is within acceptable range. History : School holidays December - January. Return to school and was placed in the lower academic classes. Prior to his concussion he was a top 10 student at an academically selective high school. Took up basketball and rowing as summer sports. Academic results tanked. Several lower limb Basketball injuries (Feb - April 17') as a result of what apppeared to be muscular imbalances from the relatively recent growth spurt, as well as taking on a new sport. Showed little interest in returning to AFL as no-one from the AFL academy had followed up on his recovery (or in this case lack of recovery).  Current History : September 2017 showed a continued decline in academic levels. School teachers noted an inability to concentrate. Academic results still well below pre-concussion levels. Fatigue continuing to be problematic. Stopped going to school for 7 weeks due to another head impact, but this time at Basketball. Literature Review : Post Concussion Syndrom (PCS) is defined as "cognitive deficits in attention or memory and at least three or more of the following symptoms: fatigue, sleep disturbances, headache, dizziness, irritability, affective disturbance, apathy, or personality change"  One of the known risk factors for Sport Related Concussion (SRC) is a history of concussion. Although, most adults recover from concussion after 10 days, there is evidence to suggest ongoing abnormailities in the brain can pursist well beyond 10 days (Prichep et al 2013, J Head Trauma Rehabil, 28, 4, 266-273). Thus, with the above described symptoms and potential motor control problems, further complications of PCS also appear to be altered proprioception, an increased risk of musculoskeletal injury which in turn can lead to SRC. The following are the results from soccer players. Nordstrom et al (2014, BMJ Sports Med, 48, 19, Predictors of PCS are uncertain. However, the following clinical variables are considered factors at increasing risk. These include prior history of concussion, sex (females more prominant), younger age, history of cognitive dysfunction, and affective disorders such as anxiety and depression (Leddy et al 2012, Sports Health, 4, 2, 147-154). Unlike the 'good old days' which recommended a dark room and rest for several weeks post concussion, the consensus appears to be a graded return to exercise in order to restore metabolic homeostasis. Disconcertingly, highly trained young individuals can find even exercises in bed extremely demanding in the presence of sport related concussion (SRC). Kozlowski et al (2013, J Ath Train, 48, 5, 627-635) used 34 people,whereby 226 days post injury to conclude significant physiological annomalies in response to exercise which may be the result of 'diffuse cerebral swelling'. Researchers have noted lower systolic and higher diastolic blood pressure in PCS (Leddy et al 2010, Clin J Sports Med, 20, 1, 21-27). Due to autonomic dysfunction manifested in altered cardiovascular and pulmonary responses (Mossberg et 2007, Arch Phys Med Rehab, 88, 3, 15-320), wheerby some clinicians have recommended the use of the exercise program for POTS (Postural Orthostatic Tachycardia Syndrome). This is a 5 month program which recommends mainly exercise in the horizontal and sitting positions for 1-4 months, including recumbent bike, rowing ergometer and swimming laps or kicking laps with a kick board. Month 4 upright bike and Month 5 upright training such as a elliptical trainer or treadmill. Other progressive exercise therapies have also included 20 minutes per day, 6 days per week, for 12 weeks of either treadmill or home gym exercises at 80% of the heart rate at which their concussion symtoms are exacerbated. Their programs were individually modified as the heart rate provoking symptoms increased. When compared to the 'control group', this intervention was shown to improve cerebral perfusion on fMRI, increase exercise tolerance at a higher heart rate, less fatigue and were showing activation patterns in areas of the brain on performing math processing test which were now normalised (Leddy et al 2010, Clin J Sports Med, 20, 1, 21-27). Graded exercises could also have included 'motor imagery' as espouse by the NOI group and the work of Lorrimer Moseley (University South Australia) when dealing with chronic pain. Ongoing Symptoms : The literature review by Leddy et al (2012) found that ongoing symptoms are either a prolonged version of concussion pathophysiology or a manifestation of other processes, such as cervical injury, migraine headaches, depression, chronic pain, vestibular dysfunction, visual disturbance, or some combination of conditions. Anatomical considerations : Extensive anatomical connections between the eyes, neck and vestibular system (Wallwork et al 2007, JOSPT, 37, 10, 608-612) allow sensory information from neck proprioceptors to be processed together with vestibular information which, via the lateral vestibulo-spinal tract, affect the control of postural muscles such as the deep trunk muscles  (Hain 2011, Neuro-Rehabilitation, 29, 2, 127-141).  Psychological considerations : The Kubler Ross model of grief are applicable when it comes to chronic sports injuries. Physiotherapy Assessment : Current history One year PCS, fatigue continued to persist. Cognitive deficits with school work were reported to becoming more apparent. Assessment using various one leg standing tests employing oscillatory movement aroud the hips and knees for kinetic limb stability and lumbopelvic stability, which had been employed 6 months previously for his Basketball injuries were exhibiting strong deficits, despite these being 'somewhat good' previously. Significantly, during the acute phase of SRC, rugby union and rugby league players have been seen with alterations of both balance strategies and motor control of the trunk (Hides et al 2017, Musculoskeletal Sci Pract, 29, 7-19).  Physical Examination : cervical and thoracic spine Due to the Joint Hypermobility Syndrome (JHS) it was difficult to ascertain neck dysfunction based on range of movement testing. ROM were unremarkable except for lateral flexion which demonstrated altered intervertebral motion in both directions. Palpation using Australian and New Zealand manual therapy techniques such as passive accessory glides (upslopes and downslopes and traction) exhibited muscles spasms in the upper right cervical spine. In particular, the right C1/2 regions demonstrated most marked restrictions in movement. Eye - Neck proprioceptive assessment using blind folds and laser pointer also  revealed marked variance from the normal. Repositioning error (RPE) using the laser pointer with rotation demonstrated marked inability to reposition accurately from the left, tending to be short and at times completely missing the bullseye. Gaze stability with body rotation was NAD. Gaze stability whilst walking displayed some difficulty. Laser pointer tracing of the alphabet was wildly inaccurate and cognitively demanding. Thoracic ring relocation testing also revealed several annomalies, which may have also accounted for some of the autonomic dysfunction observed.  Occulomotor assessment and training Upper Cervical Spine : The upper cervical spine (atlas and axis) represents approximately 50% of the available rotation. An investigation into the environmental and physiological factors affecting football (soccer) head impct biomechanics found that rotational acceleration was one of the few factors approaching significance and concluded that more research should be undertaken to evaluate this (Mihalik et al 2017 Med Sc Sp Ex, 49, 10, 2093-2101). Headache : Commonly referred to as cervicogenic headaches, one in five headaches in the general population are thought to be due to the cervical spine. The Upper Cervical Spine is particularly vulnerable to trauma because it is the most mobile part of the vertebral column, with a complex proprioceptive system connecting the vestibular apparatus and visual systems. It also coincides with the lower region of the brainstem and fourth ventricle. The brainstem houses many neurones associated with autonomic responses to pain and balance. Imaging of the fourth ventricle for swelling of the 'tonsils' and Arnold Chiari malformations are recommended when symptoms persist. In particular, children and adolescents are more vulnerable to neck contusions due to the proportionately larger head and less developed musculature. Cervical vertigo and dizziness after whiplash can mimic symptoms of PCS.. Mechanoreceptor dysfunction and vertebrobasilar artery insufficiency should be part of the differential diagnosis. Mechanical instability of the Upper Cervical Spine should also not be missed. Cervicogenic Headaches Further Interventions : Neurocognitive rehabilitation of attention processes. Psychological intervention using cognitive behavioural therapy (CBT). Neuro-opthalmologist to assess and treat smooth pursuit eye tracking. Naturopath for food intolerances and dietician for the optimisation of diet. Diet :  In cases with chronic fatiguing factors, nutrition can be become a vital aspect into the reparative process. This may include energy and mineral rich foods such as bananas, green leafy vegetables for iron and magnesium (200-300mg), oranges for vitamin C (anit-oxidant and helps with the absorption of iron), anti-oxidant rich foods such as EPA/DHA (1000mg) fish oil, curcumin (tumeric), Cats Claw, Devils Claw, Chia seeds, fruits of the forest (berries), and CoQ10 with Vitamin B. Folate and Ferritin levels should also be checked. Calorific energy intake should balance with energy exependiture. However, as we are often dealing with young individuals, as in this case, some form of comfort food may be appropriate such as, nuts, legumes, homus and sushi. Protein intake prior to carbohydrate intake may help ameliorate any blood suger fluctuations due to Glycemic Index factors, however simple carbohydrates (high GI) should be avoided wherever practical. Even oats need to be soaked overnight and cooked briefly, otherwise they become a high GI food and may even affect the absorption of iron. The type of rice used can also influence GI, hence the addition of protein such as fish. Protein supplementations are generally over-used. Daily protein intake should not exceed 1.2g per kg of body weight per day. Dosage for children is less than that for adults. See Nutritional Section of this Site Trunk muscles : Researchers have found that a history of SRC had an increased possibility of having altered size and contraction of their trunk muscles, incuding smaller multifidus, larger quadratus lumborum muscles, and asymmetrical contraction of their transverse abdominis muscles, whereby an increased thickness and resting tone of the right anteroloateral abdominal muscle has been observed (Hides et al 2017 Med Sc Sp Ex, 49, 12, 2385-2393). In this case, by the second incident (Basketball impact), the subject was 15 years of age and 193cm in height. Apart from being very tall for his age he also has joint hypermobility. Combinations of SRC, growth spurt and hypemobility may have had a greater impact on his motor performance making secondary trauma more likely? A 3-6 increased risk of future SRC has been reported in the literature in cases of concussion (Abrahams et al 2014, Br J sp Med, 48, 2, 91-97). In our subject, using the laser repositioning error described above, marked inability to reposition the neck from the left was seen. This concurs with the findings in Australian Football Players (AFL), where a mean of 4.5 degrees of joint position error was reported on the left hand side (Hides et al 2017 Med Sc Sp Ex, 49, 12, 2385-2393). This is noteworthy, as our subjects initial concussion took place during AFL, with the subsequent concussion occurring in Basketball. It should also be remembered that this subject presented to physiotherapy for an ankle injury some 6 months after the initial concussion. Lower limb kinematic exercising ability, emphasising global balance and kinematic 'inverse dynamics' muscular energy strap transfer prinicples, demonstrated strength and balance deficits within the following prgramme. It should be noted that this regime places emphasis on repatitive loading; hence 3 x 40 reps. Interestingly, an investigation comparing lower limb (LL) and back exercises (lumbar extension LE and lumbar stabilisation LS) for runners with chronic low back pain reported  greater improvement in self-rated running capability and knee extension strength in the LL group vs LE and LS groups greater increase in running step length in LL and LE groups and similar reductions in running induced pain and improvement in back muscles across all three exercise groups. (Cai et al 2018, Med Sc Sp EX, 49, 12, 2374-2384) Extrapolation of these results to the current clinical setting suggests the importance of lower limb dynamic stability in cases of concussion. Moreover, recognition of these deficits may have prevented the second incidence of concussion? Conclusion  Investigations, into people with persisting PCS, demonstrated that they applied more force over time to control balance. Helmich et al (2016, Med Sc Ex Sp, 48,  12, 2362-2368) proposed that in regard to cognitive processes, the increase of cerebral activation indicates an increase of attention demanding processes during postural control in altered environments. This is relevant in so far as individuals with post concussive symptomatology have a variety of symptoms including headache, dizziness, and cognitive difficulties that usually resolve over a few days to weeks. However, a subgroup of patients can have persistent symptoms which last months and even years. Complications in differential diagnosis, can arise clinically, when neck dysfunction and altered motor control occur concurrently due to both neck and cerebral pathology. For example, Whiplash and other traumatic head and neck injuries can result in pathology to both regions, whereas, more discreet altered cognitive processing from concussion can result in altered neck motor control. Musculoskelatal Physiotherapy can play a vital part in the treatment of neck dysfunction including the re-establishment of occulomotor proprioception and managing localized strength and cardiovascular exercise regimes. A total body, multi-disciplinary approach which is well co-ordinated amongst practitioners is vital to an optimal outcome.    Updated : 10 February 2018. Original : 17 November 2017 Read More
  • Thu 24 Aug 2017

    Pain in the Brain - neural plasticity

    Pain in the Brain and Neural Plasticity by Martin Krause There are several mechanisms that can create a sensation of pain, which has been described as 'an unpleasent sensory and emotional experience in response to perceived or potential tissue damage'. Pain can be the result of peripheral sensitisation from peripheral inflammation, vascular compromise, necrosis, swelling, etc. Importantly, higher centres of the central nervous system not only perceive such sensitization of the peripheral nerve receptors, they can also modulate and control the intensity and tolerability of the perceived sensation through descending modulation at the peripheral receptor and in the spinal cord and through transcortical mechanisms depending on the 'meaning' and 'context given to the pain. Moreoever, the higher centres can create a 'state' of perceived 'threat' to the body through emotions such as fear and anxiety. Rather than the brain acting as a filter of unwanted sensation, in the higher centre induced pain state, rumination and magnification of sensations occur to create a pathological state.  Paradoxically, representation of body parts such as limbs and individual muscles can reduce in perceived size. In such instances the pain doesn't represent the sensation of pathology but rather pain has become the pathology. Hence, the brain generates pain in the brain, where the pain is perceived to be some sort of non-existant inflammatory or pathological sensation in the periphery. Evidence for this neural plasticity comes from imaging studies, where brain white matter structural properties have been shown to predict transition to chronic pain (Mansour et al 2013, Pain, 154, 10, 2160-2168). Specifically, differential structural connectivity to medial vs lateral prefrontal cortex and connectivity between medial prefrontal cortex and nucleus accumbens has been shown in people with persistent low back pain. In this case the back pain becomes the inciting event and given the persons' structural propensity, establishes specific functional coonectivity strength.  further reading Peripheral input is a powerful driver to neuroplasticity. Information gathered by touch, movement and vision, in the context of pain can lead to mal-adaptive plasticity, including the reorganisation of the somatosensory, and motor cortices, altered cortical excitability and central sensitisation. Examples of somatosensory reorganisation come from the work of Abrahao Baptista when investigating chronic anterior knee pain, who not only demonstrated reduced volume of Vastus Medialis but also is cortical translocation to another part of the cortex. ndividuals with patellofemoral pain (PFP) had reduced map volumes and an anterior shift in the M1 representations, greater overlap of the M1 representation and a reduction in cortical peaks across all three quadriceps (RF, VL, VMO) muscles compared with controls.(Te et al 2017 Pain Medicine, pnx036,   AKP = anterior knee pain The same researcher (Abrahao Baptista) has shown that maximal tolerable electrical stimulation (eg TENS) of muscles can induce normalisation of the cortical changes through a process called 'smudging'. Transcortical stumilation has also been applied as a cortical 'primer' prior to the application of more traditional therapy such as motor re-training, exercise, and manipulation. Body illusions are another novel way to promote the normalisation of cortical function through adaptive neuroplasticity. Examples come from people with hand athritis, whose perception of their hand size is underestimated (Gilpin et al 2015 Rheumatology, 54, 4, 678-682). Using a curved mirror, similar to that in theme parks, the visual input can be increased to perceive the body part as larger (Preston et al 2011 DOI: 10.1093/rheumatology/ker104 · Source:PubMed ) . Irrespective of size, watching a reflection of the hand while performing synchronised movements enhances the embodiment of the reflection of the hand (Whitkopf et al 2017, Exp Brain res, 23, 5, 1933-1944). These visual inputs are thought to affect the altered functional connectivity between areas of the brain thereby affecting the 'pain matrix'. Another, novel way of looking at movement and pain perception is the concept of the motor engram. This has been defined as motor skill acquisition through the modification and organisation of muscle synergies into effective movement sequences. The learning process is thought to be acquired as a child through experientially based play activity. The specific neural mechanisms involved are unknown, however they are thought to include motor map topography reflecting the capacity for skilled movement reorganisation of motor maps in a manner that reflects the kinematics of aquired skilled movement map plasticity is supported by a reorganisation of cortical microcircuitry involving changes in synaptic efficacy motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience (Monfils 2005 Neuroscientist, 11, 5, 471-483). Interestingly, it is an intriguing notion that accessing motor engrams from patterns aquired prior to the pain experience might lead a normalisation of brain activity. My personal experience of severe sciatica with leg pain, sleepness nights and a SLR of less than 30 degrees, happened to coincide with training my 9 year old sons soccer training. I was noticing that the nights after i trained the children, I slept much better and my range of movement improved. I commenced a daily program of soccer ball tricks which i had been showing the kids, including 'juggling', 'rainbows' and 'around the worlds'. Eventually, I even took up playing soccer again after a 30 year abscence from the sport. Other than new activity related pain issues (DOMS), four years on, the sciatica hasn't returned. I can only conclude that this activity activated dormant childhood motor engram, worked on global balance, mobilised my nerve, encouraged cross cortical activity and turned my focus into finctional improvement. Further explainations for my expereience comes from evidence suggesting that a peripheral adaptive pain state is initiated, whereby transcortical inhibiton occurs by the contralaleral hemisphere to the one which controls the affected limb. Additionally, excitation cortical (M1) drive of the muscles of the contralateral limb to the one which is in pain also occurs. In such cases re-establishement of motor drive to the affected side is important. In terms of tendon rehabilitation, external audtory and visual cues using a metronome have been employed and are showing promising results (Ebonie Rio et al 2017 Personal communication). In terms of my experience with the soccer ball tricks, the external visual cues and the cross talk from using left and right feet, head, shoulders, and chest during ball juggling manouvers, whilst calling the rhythm to the kids may have been the crucial factor to overcome the dysfunctional brain induced pain - muscle inco-ordination cycle, which I was in. Additionally, I was cycling which allowed me to focus on motor drive into the affected.limb. However, work by Lorrimer Moseley on CRPS has established that 'brain laterality' must be established before commencing trans-cortical rehabilitation techniques. Lorrimer's clinical interventions use 'mirror imaging' techniques which are only effective once the patient is able to discriminate the left and right sides of the affected body parts, presented visually, in various twists and angles.   Alternatively, the altered pain state can result in a hostage like situation, whereby the pain takes control. Similar to the 'Stockholm Syndrome' where the hostage begins to sympathise with their captors, so do some peoples brain states, where it begin to sympathise with the pain, creating an intractable bondage and dysfunctional state. One screening question which may reflect commitment to the process of rehabilitatation is to question whether they were able to resist the cookie jar when they were a child? Or were they committed to any sporting endeavours as a child? This may give some indication for the presence of motor engrams which can be used to overcome dysfunctional pain induced muscle synergies (neurotags), but also indicate an ability to be self disciplined, as well as being able to reconcile and identify goal oriented objectives, in spite of the cognitive pain processes? Remember that neurons that fire together, wire together. Uploaded : 18 October 2017 Read More
  • Thu 03 Aug 2017

    Sickle Cell Trait and Acute Low Back Pain

    Researchers believe that lumbar paraspinal myonecrosis (LPSMN) may contribute to the uncommon paraspinal compartment syndrome and that sickle cell trait (SCT) may play a role. Sustained, intense exertion of these lumbar paraspinal muscles can acutely increase muscle size and compartment pressure and so decrease arterial perfusion pressure. This same exertion can evoke diverse metabolic forces that in concert can lead to sickling in SCT that can compromise perfusion in the microvasculature of working muscles. In this manner, they believe that SCT may represent an additional risk factor for LPSMN. Accordingly, they presented six cases of LPSMN in elite African American football players with SCT. See link below Read More
  • Thu 03 Aug 2017

    Ibuprofen, Resistance Training, Bone Density

    Taking Ibuprofen immediately after resistance training has a deleterious effect on bone mineral content at the distal radius, whereas taking Ibuprofen or undertaking resistance training individually prevented bone mineral loss. Read More
  • Tue 11 Jul 2017

    Mitochondrial Health and Sarcopenia

    The aging process (AKA 30 years of age onwards), in the presence of high ROS (reactive oxygen species) and/or damaged mitochondrial DNA, can induce widespred mitochondrial dysfunction. In the healthy cell, mitophagy results in the removal of dysfunctional mitochondria and related material. In the abscence of functional removal of unwanted mitochondrial material, a retrograde and anterograde signalling process is potentially instigated, which results in both motor neuronal and muscle fibre apoptosis (death) (Alway, Mohamed, Myers 2017, Ex Sp Sc Rev, 45, 2, 58-69). This process is irreversible. Investigations in healthy populations, have shown that regular exercise improves the ability to cope with regular oxidative stress by the buffering and 'mopping up' of ROS agents which are induced as a result of exercise. It is plausible and highly probable that regular exercise throughout life can mitigate against muscle fibre death (Sarcopenia). Importantly, this process of muscle fibre death can commence in the 4th decade of life. and be as much as 1% per year. Reduction of muscle mass can result in immune and metabolic compromise, including subclinical inflammation, type II diabetes as well as the obvious reduction in functional capacity for activities of daily living. Published 11 July 2017 Read More
  • Thu 22 Dec 2016

    Ehlers Danlos Syndrome

    Is your child suffering Ehlers Danlos Syndrome? Hypermobile joints, frequent bruising, recurrent sprains and pains? Although a difficult manifestation to treat, physiotherapy can help. Joint Hypermobility Syndrome (JHS) by Martin Krause When joint hypermobility coexists with arthralgias in >4 joints or other signs of connective tissue disorder (CTD), it is termed Joint Hypermobility Syndrome (JHS). This includes conditions such as Marfan's Syndrome and Ehlers-Danlos Syndrome and Osteogenesis imperfecta. These people are thought to have a higher proportion of type III to type I collagen, where type I collagen exhibits highly organised fibres resulting in high tensile strength, whereas type III collagen fibres are much more extensible, disorganised and occurring primarily in organs such as the gut, skin and blood vessels. The predominant presenting complaint is widespread pain lasting from a day to decades. Additional symptoms associated with joints, such as stiffness, 'feeling like a 90 year old', clicking, clunking, popping, subluxations, dislocations, instability, feeling that the joints are vulnerable, as well as symptoms affecting other tissue such as paraesthesia, tiredness, faintness, feeling unwell and suffering flu-like symptoms. Autonomic nervous system dysfunction in the form of 'dysautonomia' frequently occur. Broad paper like scars appear in the skin where wounds have healed. Other extra-articular manifestations include ocular ptosis, varicose veins, Raynauds phenomenon, neuropathies, tarsal and carpal tunnel syndrome, alterations in neuromuscular reflex action, development motor co-ordination delay (DCD), fibromyalgia, low bone density, anxiety and panic states and depression. Age, sex and gender play a role in presentaton as it appears more common in African and Asian females with a prevalence rate of between 5% and 25% . Despite this relatively high prevalence, JHS continues to be under-recognised, poorly understood and inadequately managed (Simmonds & Kerr, Manual Therapy, 2007, 12, 298-309). In my clinical experience, these people tend to move fast, rely on inertia for stability, have long muscles creating large degrees of freedom and potential kinetic energy, resembling ballistic 'floppies', and are either highly co-ordinated or clumsy. Stabilisation strategies consist of fast movements using large muscle groups. They tend to activities such as swimming, yoga, gymnastics, sprinting, strikers at soccer. Treatment has consisted of soft tissue techniques similar to those used in fibromyalgia, including but not limited to, dry needling, myofascial release and trigger point massage, kinesiotape, strapping for stability in sporting endeavours, pressure garment use such as SKINS, BSc, 2XU, venous stockings. Effectiveness of massage has been shown to be usefull in people suffering from chronic fatigue syndrome (Njjs et al 2006, Man Ther, 11, 187-91), a condition displaying several clinical similarities to people suffering from EDS-HT. Specific exercise regimes more attuned to co-ordination and stability (proprioception) than to excessive non-stabilising stretching. A multi-modal approach including muscle energy techniques, dry needling, mobilisations with movement (Mulligans), thoracic ring relocations (especially good with autonomic symptoms), hydrotherapy, herbal supplementaion such as Devils Claw, Cats Claw, Curcumin and Green Tee can all be useful in the management of this condition. Additionally, Arnica cream can also be used for bruising. Encouragment of non-weight bearing endurance activities such as swimming, and cycling to stimulate the endurance red muscle fibres over the ballistic white muscles fibres, since the latter are preferably used in this movement population. End of range movements are either avoided or done with care where stability is emphasized over mobility. People frequently complain of subluxation and dislocating knee caps and shoulders whilst undertaking a spectrum of activities from sleeping to sporting endeavours. A good friend of mine, Brazilian Physiotherapist and Researcher, Dr Abrahao Baptista, has used muscle electrical stimulation on knees and shoulders to retrain the brain to enhance muscular cortical representation which reduce the incidence of subluxations and dislocations. Abrahao wrote : "my daughter has a mild EDS III and used to dislocate her shoulder many times during sleeping.  I tried many alternatives with her, including strenghtening exercises and education to prevent bad postures before sleeping (e.g. positioning her arm over her head).  What we found to really help her was electrostimulation of the supraspinatus and posterior deltoid.  I followed the ideas of some works from Michael Ridding and others (Clinical Neurophysiology, 112, 1461-1469, 2001; Exp Brain Research, 143, 342-349 ,2002), which show that 30Hz electrostim, provoking mild muscle contractions for 45' leads to increased excitability of the muscle representation in the brain (at the primary motor cortex).  Stimulation of the supraspinatus and deltoid is an old technique to hemiplegic painful shoulder, but used with a little different parameters.  Previous studies showed that this type of stimulation increases brain excitability for 3 days, and so we used two times a week, for two weeks.  After that, her discolcations improved a lot.  It is important to note that, during stimulation, you have to clearly see the humerus head going up to the glenoid fossa" Surgery : The effect of surgical intervention has been shown to be favourable in only a limited percentage of patients (33.9% Rombaut et al 2011, Arch Phys Med Rehab, 92, 1106-1112). Three basic problems arise. First, tissues are less robust; Second, blood vessel fragility can cause technical problems in wound closure; Third, healing is often delayed and may remain incomplete.  Voluntary Posterior Shoulder Subluxation : Clinical Presentation A 27 year old male presented with a history of posterior shoulder weakness, characterised by severe fatigue and heaviness when 'working out' at the gym. His usual routine was one which involved sets of 15 repetitions, hence endurance oriented rather than power oriented. He described major problems when trying to execute bench presses and Japanese style push ups. In a comprehensive review of 300 articles on shoulder instability, Heller et al. (Heller, K. D., J. Forst, R. Forst, and B. Cohen. Posterior dislocation of the shoulder: recommendations for a classification. Arch. Orthop. Trauma Surg. 113:228-231, 1994) concluded that posterior dislocation constitutes only 2.1% of all shoulder dislocations. The differential diagnosis in patients with posterior instability of the shoulder includes traumatic posterior instability, atraumatic posterior instability, voluntary posterior instability, and posterior instability associated with multidirectional instability. Laxity testing was performed with a posterior draw sign. The laxity was graded with a modified Hawkins scale : grade I, humeral head displacement that locks out beyond the glenoid rim; grade II, humeral displacement that is over the glenoid rim but is easily reducable; and grade III, humeral head displacement that locks out beyond the glenoid rim. This client had grade III laxity in both shoulders. A sulcus sign test was performed on both shoulders and graded to commonly accepted grading scales: grade I, a depression <1cm: grade 2, between 1.5 and 2cm; and grade 3, a depression > 2cm. The client had a grade 3 sulcus sign bilaterally regardless if the arm was in neutral or external rotation. The client met the criteria of Carter and Wilkinson for generalized liagmentous laxity by exhibiting hyperextension of both elbows > 10o, genu recurvatum of both knees > 19o, and the ability to touch his thumbto his forearm Headaches Jacome (1999, Cephalagia, 19, 791-796) reported that migraine headaches occured in 11/18 patients with EDS. Hakim et al (2004, Rheumatology, 43, 1194-1195) found 40% of 170 patients with EDS-HT/JHS had previously been diagnosed with migraine compared with 20% of the control population. in addition, the frequency of migraine attacks was 1.7 times increased and the headache related disability was 3.0 times greater in migraineurs with EDS-HT/JHS as compared to controls with migraine (Bendick et al 2011, Cephalgia, 31, 603-613). People suffering from soft tissue hypermobility, connective tissue disorder, Marfans Syndrome, and Ehler Danlos syndrome may be predisposed to upper cervical spine instability. Dural laxity, vascular irregularities and ligamentous laxity with or without Arnold Chiari Malformations may be accompanied by symptoms of intracranial hypotension, POTS (postural orthostatic tachycardia syndrome), dysautonomia, suboccipital "Coat Hanger" headaches (Martin & Neilson 2014 Headaches, September, 1403-1411). Scoliosis and spondylolisthesis occurs in 63% and 6-15% of patients with Marfans syndrome repsectively (Sponseller et al 1995, JBJS Am, 77, 867-876). These manifestations need to be borne in mind as not all upper cervical spine instabilities are the result of trauma. Clinically, serious neurological complications can arise in the presence of upper cervical spine instability, including a stroke or even death. Additionally, vertebral artery and even carotid artery dissections have been reported during and after chiropractic manipulation. Added caution may be needed after Whiplash type injuries. The clinician needs to be aware of this possibility in the presence of these symptoms, assess upper cervical joint hypermobility with manual therapy techniques and treat appropriately, including exercises to improve the control of musculature around the cervical and thoracic spine. Atlantoaxial instability can be diagnosed by flexion/extension X-rays or MRI's, but is best evaluated by using rotational 3D CT scanning. Surgical intervention is sometimes necessary. An interesting case of EDS and it's affect on post concussion syndrome can be read elsewhere on this site. Temperomandibular Joint (TMJ) Disorders The prevelence of TMJ disorders have been reported to be as high as 80% in people with JHD (Kavucu et al 2006, Rheum Int., 26, 257-260). Joint clicking of the TMJ was 1.7 times more likely in JHD than in controls (Hirsch et al 2008, Eur J Oral Sci, 116, 525-539). Headaches associated with TMJ disorders tend to be in the temporal/masseter (side of head) region. TMJ issues increase in prevelence in the presence of both migraine and chronic daily headache (Goncalves et al 2011, Clin J Pain, 27, 611-615). I've treated a colleague who spontaneously dislocated her jaw whilst yawning at work one morning. stressful for me and her! Generally, people with JHD have increased jaw opening (>40mm from upper to lower incisors). Updated 17 October 2017  Read More
  • Fri 09 Dec 2016

    Physiotherapy with Sharna Hinchliff

    Physiotherapy with Sharna Hinchliff    Martin is pleased to welcome the very experienced physiotherapist Sharna Hinchliff to Back in Business Physiotherapy for one on one physiotherapy sessions with clients in 2017.  Sharna is a passionate triathelete and mother and has had several years experience working locally and internationally (New York and London) in the field of physiotherapy. Originally from Western Australia, Sharna graduated from the world renowned Masters of Manipulative Physiotherapy at Curtin University. read more Read More

Funding, Advertising and Linking Policy

This site is set up as a free of charge service to the community. Back in Business Physiotherapy pays for all aspects of this website and does not endorse any paid advertising on this site. Back in Business Physiotherapy does have an affiliate program with Lunar pages who host this website. Additionally, the links to Human Kinetics and Amazon may result in Back in Business Physiotherapy receiving a small commission for precisely those books if purchased on those sites. Links to other sites are based on the relevance of that sites information to the principles of this websites desire to enhance the standards of Physiotherapy. Unless I am the author of the content of a linked site, these links are not based on reciprocal agreements. No banner adds or pop-ups should appear on your browser as a result of browsing this website. However, if you leave this website to a related one, Back in Business Physiotherapy cannot accept responsibility for neither changes in their contents nor their advertising or privacy policies.

image removed

Updated : 10 May 2014

No responsibility is assumed by Back in Business Physiotherapy for any injury and/or damage to persons or property as a matter of product liability, negligence, or from any use of any methods, products, instruction, or ideas contained in the material in this and it's related websites. Because of rapid advances in the medical sciences, the author recommends that there should be independent verification of diagnoses and exercise prescription. The information provided on Back in Business Physiotherapy is designed to support, not replace, the relationship that exists between a patient/site visitor and their treating health professional.

Copyright Martin Krause 1999 - material is presented as a free educational resource however all intellectual property rights should be acknowledged and respected